887 resultados para nanoparticelle magnesio idrogeno IGC SEM XRD Sievert titanio idruro
Resumo:
O processo de transformação da pele em couro envolve uma seqüência complexa de reações químicas e processos mecânicos, no qual o curtimento representa fundamental estágio, por propiciar à pele características como qualidade, estabilidade hidrotérmica e excelentes propriedades para uso. O sulfato básico de cromo trivalente é o agente curtente predominantemente empregado no curtimento de peles em todo o mundo. É produzido a partir do cromato de sódio, industrialmente obtido do minério de cromo. Consideráveis quantidades de resíduos sólidos contendo cromo são geradas pelas indústrias coureira e calçadista. Estes resíduos tem sido motivo de preocupação constante, uma vez que são considerados perigosos devido a presença do cromo. O processo de incineração destes resíduos é uma importante alternativa a ser considerada, em decorrência de suas características de redução de massa, volume e possibilidade de aproveitamento da energia térmica dos gases de combustão. O processo de incineração dos resíduos das indústrias coureira e calçadista dá origem a cinzas contendo cerca de 40% de cromo que pode ser submetida a um processo de recuperação. Este trabalho apresenta os resultados da pesquisa sobre a utilização das cinzas, provenientes da incineração dos resíduos sólidos da indústria coureira e da indústria calçadista, para a produção de cromato de sódio(VI). No processo de planejamento e de condução dos experimentos foram utilizadas as técnicas de Planejamento Fatorial 2k, Metodologia de Superfície de Resposta e Análise de Variância na avaliação da produção de cromato de sódio(VI). Os fatores investigados foram: temperatura, taxa de aquecimento, tempo de reação, vazão de ar e quantidade de dolomita. A partir das variáveis selecionadas identificaram-se como parâmetros importantes a temperatura e a taxa de aquecimento. As superfícies de resposta tridimensionais obtidas a partir dos modelos de segunda ordem ajustados aos dados experimentais, apresentaram o comportamento do efeito conjugado dos fatores temperatura e taxa de aquecimento sobre a variável resposta grau de oxidação, desde a temperatura de inicio da reação química até a temperatura limite utilizada industrialmente. As condições de operação do processo de produção de cromato de sódio(VI) foram otimizadas. Os níveis ótimos dos fatores de controle aplicados as cinzas dos resíduos da indústria calçadista, geradas em uma planta piloto com incinerador de leito fixo, com tecnologia de gaseificação e combustão combinadas, apresentaram um grau de oxidação superior a 96% para as cinzas coletadas no ciclone e de 99,5% para as cinzas coletas no reator de gaseificação. Os resíduos sólidos, as cinzas e o produto de reação foram caracterizados por análises químicas, fluorescência de raio-X, microscopia eletrônica de varredura e difração de raio-X.
Resumo:
In Chapter 1, rhodium nanoparticles were supported on multiwalled carbon nanotubes (MWCNTs) and bound to the magnetic core-shell system Fe3O4@TiO2. The composite Fe3O4@TiO2-Rh-MWCNT and the intermediates were characterized by SEM, EDS and TEM. Their catalytic activity was studied using i) the hydrogenation transfer of nitroarenes and cyclohexene in the presence of hydrazine hydrate; ii) the reduction of 2-nitrophenol with NaBH4; and iii) the decoloration of pigments in the presence of hydrogen peroxide. The results were monitored by gas chromatography (i) and UV Visible (ii and iii). In the second chapter, the catalytic activity of six oxidovanadium(V) aroylhydrazone complexes, viz. [VOL1(OEt)][VOL1(OEt)(EtOH)] (1), [VOL2(OEt)] (2), [Et3NH][VO2L1] (3), [VO2(H2L2)]2·EtOH (4), [VOL1(µ -O)VOL1] (5) and [VOL2(µ -O)VOL2] (6) (H2L1 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2hydroxybenzohydrazide and H2L2 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2 aminobenzohydrazide), anchored on nanodiamonds with different treatments, was studied towards the microwave-assisted partial oxidation of 1-phenylethanol to acetophenone in the presence of tert-butyl hydroperoxide (TBHP) as oxidant. A high selectivity for acetophenone was achieved for the optimized conditions. The possibility of recycling and reuse the heterogeneous catalysts was also investigated. In chapter 3, the catalytic activity of gold nanoparticles supported at different metal oxides, such as Fe2O3, Al2O3 ZnO or TiO2, was studied for the above reaction. The effect of the support, quantity of the catalyst and temperature was investigated. The recyclability of the gold catalysts was also studied. In the last chapter, a new copper nanocomposite with functionalized mutiwalled carbon nanotubes (Cu-MWCNT) was synthesized using a microwave assisted polyol method. The characterization was performed using XRD and SEM. The catalytic activity of Cu-MWCNT was studied through the degradation of pigments, such as amaranth, brilliant blue, indigo, tartrazine and methylene blue.
Resumo:
VARELA, M.L. et al. Otimização de uma metodologia para análise mineralógica racional de argilominerais. Cerâmica, São Paulo, n. 51, p. 387-391, 2005.
Resumo:
Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores
Resumo:
The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks
Resumo:
The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W
Resumo:
The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)
Resumo:
One of waste produced on large scale during the well drilling is the gravel drilling. There are techniques for the treatment of the same, but there isn t consensus on what are the best in terms of economic and environmental. One alternative for disposal of this waste and objective of this paper is the incorporation and immobilization of gravel clay matrix to assess their technological properties. The Raw Materials used were characterized by the following techniques: Chemical Analysis by X-ray fluorescence (XRF), mineralogical analysis by X-ray Diffraction (XRD), Grain Size Analysis (FA) and Thermal Analysis by Thermogravimetry (TG) and thermodiferential (DTA). After characterizing, samples were formulated in the following percentages: 0, 5, 10, 15, 25, 50, 75, 100% (weight) of gravel drilling, then the pieces were pressed, dried (110 ° C) and sintered at temperatures of 850, 950 and 1050 ° C. After sintering, samples were tested for water absorption, linear shrinkage, flexural strength, porosity, density, XRD and test color. The results concluded that the incorporation of gravel drilling is a viable possibility for solid masonry bricks and ceramic blocks manufacture at concentrations and firing temperature described here. Residue incorporation reduces an environmental problem, the cost of raw materials for manufacture of ceramic products
Resumo:
In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples
Resumo:
Inorganic pigment comprises a host lattice, which is part of the chromophore component (usually a transition metal cation) and possible components modifiers, which stabilize, add or restate the properties pigments. Among the materials with spinel, ferrites, and the chromite stand out, because they have broad technological importance in the area of materials, applicability, pigments, catalytic hydrogenation, thin film, ceramic tiles, among others. The present work, pigments containing CuFe2O4, CuCr2O4,e CuFeCrO4, were synthesized by a method that makes use of gelatin as organic precursor using their application to ceramic pigments. The pigments were characterized by X-ray diffraction (XRD), Infrared spectroscopy, scanning electron microscopy (SEM) spectroscopy in the UV-visible and Colorimetry. The results confirmed the feasibility of the synthetic route used, with respect to powders synthesized, there is the formation of spinel phase from 500°C, with an increase in crystallinity and the formation of other phases. The pigments were shown to be crystalline and the desired phases were obtained. The copper chromite have hues ranging from green to black according to the calcination temperature, while the copper chromite doped with iron had brownish. The ferrites showed copper color and darker brown to black, which may indicate an interesting factor because of the importance of black pigment
Resumo:
Poly(methyl methacrylate)/clay nanocomposites were prepared by melt mixing using a montmorillonite-rich clay (MMT). The clay in natura was treated with acrylic acid to facilitate the dispersion in the polymer matrix. A masterbatch of PMMA/clay was prepared and combined with the pure PMMA and then subjected to extrusion process using singlescrew and twin-screw extruders followed by injection. Nanocomposites were processed with clay contents of 1, 3, 5 and 8 wt.%. The effect of shear processing on the morphology of the nanocomposites was evaluated by XRD, SEM and TEM. Thermal and mechanical properties of the nanocomposites were investigated through TGA, DSC, HDT, VICAT, tensile and impact tests, to evaluate the effect of the addition of clay to the PMMA matrix. Flammability tests were also conducted to investigate the effect of the addition of clay on the flame retardation properties. SEM images of the nanocomposites indicated the presence of clay agglomerates, which resulted in the reduction of properties such as thermal stability, mechanical strength and impact resistance, and increased the rate of burning for materials processed by both extrusion routes
Resumo:
It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment
Resumo:
The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested