950 resultados para multi-channel processing
Resumo:
Estuaries are perhaps the most threatened environments in the coastal fringe; the coincidence of high natural value and attractiveness for human use has led to conflicts between conservation and development. These conflicts occur in the Sado Estuary since its location is near the industrialised zone of Peninsula of Setúbal and at the same time, a great part of the Estuary is classified as a Natural Reserve due to its high biodiversity. These facts led us to the need of implementing a model of environmental management and quality assessment, based on methodologies that enable the assessment of the Sado Estuary quality and evaluation of the human pressures in the estuary. These methodologies are based on indicators that can better depict the state of the environment and not necessarily all that could be measured or analysed. Sediments have always been considered as an important temporary source of some compounds or a sink for other type of materials or an interface where a great diversity of biogeochemical transformations occur. For all this they are of great importance in the formulation of coastal management system. Many authors have been using sediments to monitor aquatic contamination, showing great advantages when compared to the sampling of the traditional water column. The main objective of this thesis was to develop an estuary environmental management framework applied to Sado Estuary using the DPSIR Model (EMMSado), including data collection, data processing and data analysis. The support infrastructure of EMMSado were a set of spatially contiguous and homogeneous regions of sediment structure (management units). The environmental quality of the estuary was assessed through the sediment quality assessment and integrated in a preliminary stage with the human pressure for development. Besides the earlier explained advantages, studying the quality of the estuary mainly based on the indicators and indexes of the sediment compartment also turns this methodology easier, faster and human and financial resource saving. These are essential factors to an efficient environmental management of coastal areas. Data management, visualization, processing and analysis was obtained through the combined use of indicators and indices, sampling optimization techniques, Geographical Information Systems, remote sensing, statistics for spatial data, Global Positioning Systems and best expert judgments. As a global conclusion, from the nineteen management units delineated and analyzed three showed no ecological risk (18.5 % of the study area). The areas of more concern (5.6 % of the study area) are located in the North Channel and are under strong human pressure mainly due to industrial activities. These areas have also low hydrodynamics and are, thus associated with high levels of deposition. In particular the areas near Lisnave and Eurominas industries can also accumulate the contamination coming from Águas de Moura Channel, since particles coming from that channel can settle down in that area due to residual flow. In these areas the contaminants of concern, from those analyzed, are the heavy metals and metalloids (Cd, Cu, Zn and As exceeded the PEL guidelines) and the pesticides BHC isomers, heptachlor, isodrin, DDT and metabolits, endosulfan and endrin. In the remain management units (76 % of the study area) there is a moderate impact potential of occurrence of adverse ecological effects and in some of these areas no stress agents could be identified. This emphasizes the need for further research, since unmeasured chemicals may be causing or contributing to these adverse effects. Special attention must be taken to the units with moderate impact potential of occurrence of adverse ecological effects, located inside the natural reserve. Non-point source pollution coming from agriculture and aquaculture activities also seem to contribute with important pollution load into the estuary entering from Águas de Moura Channel. This pressure is expressed in a moderate impact potential for ecological risk existent in the areas near the entrance of this Channel. Pressures may also came from Alcácer Channel although they were not quantified in this study. The management framework presented here, including all the methodological tools may be applied and tested in other estuarine ecosystems, which will also allow a comparison between estuarine ecosystems in other parts of the globe.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.
Resumo:
Reliability of communications is key to expand application domains for sensor networks. SinceWireless Sensor Networks (WSN) operate in the license-free Industrial Scientific and Medical (ISM) bands and hence share the spectrum with other wireless technologies, addressing interference is an important challenge. In order to minimize its effect, nodes can dynamically adapt radio resources provided information about current spectrum usage is available. We present a new channel quality metric, based on availability of the channel over time, which meaningfully quantifies spectrum usage. We discuss the optimum scanning time for capturing the channel condition while maintaining energy-efficiency. Using data collected from a number of Wi-Fi networks operating in a library building, we show that our metric has strong correlation with the Packet Reception Rate (PRR). This suggests that quantifying interference in the channel can help in adapting resources for better reliability. We present a discussion of the usage of our metric for various resource allocation and adaptation strategies.
Resumo:
This paper studies a discrete dynamical system of interacting particles that evolve by interacting among them. The computational model is an abstraction of the natural world, and real systems can range from the huge cosmological scale down to the scale of biological cell, or even molecules. Different conditions for the system evolution are tested. The emerging patterns are analysed by means of fractal dimension and entropy measures. It is observed that the population of particles evolves towards geometrical objects with a fractal nature. Moreover, the time signature of the entropy can be interpreted at the light of complex dynamical systems.
Resumo:
Collective behaviours can be observed in both natural and man-made systems composed of a large number of elemental subsystems. Typically, each elemental subsystem has its own dynamics but, whenever interaction between individuals occurs, the individual behaviours tend to be relaxed, and collective behaviours emerge. In this paper, the collective behaviour of a large-scale system composed of several coupled elemental particles is analysed. The dynamics of the particles are governed by the same type of equations but having different parameter values and initial conditions. Coupling between particles is based on statistical feedback, which means that each particle is affected by the average behaviour of its neighbours. It is shown that the global system may unveil several types of collective behaviours, corresponding to partial synchronisation, characterised by the existence of several clusters of synchronised subsystems, and global synchronisation between particles, where all the elemental particles synchronise completely.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.
Resumo:
Componentised systems, in particular those with fault confinement through address spaces, are currently emerging as a hot topic in embedded systems research. This paper extends the unified rate-based scheduling framework RBED in several dimensions to fit the requirements of such systems: we have removed the requirement that the deadline of a task is equal to its period. The introduction of inter-process communication reflects the need to communicate. Additionally we also discuss server tasks, budget replenishment and the low level details needed to deal with the physical reality of systems. While a number of these issues have been studied in previous work in isolation, we focus on the problems discovered and lessons learned when integrating solutions. We report on our experiences implementing the proposed mechanisms in a commercial grade OKL4 microkernel as well as an application with soft real-time and best-effort tasks on top of it.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
Cooperating objects (COs) is a recently coined term used to signify the convergence of classical embedded computer systems, wireless sensor networks and robotics and control. We present essential elements of a reference architecture for scalable data processing for the CO paradigm.
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
The growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.