1000 resultados para modelagem de equações estruturais
Resumo:
O setor automotivo é bastante representativo na economia nacional, o que motivou a realização deste estudo sobre a demanda por veículos novos no Brasil. No presente trabalho, é abordado um modelo econométrico que permite calcular as elasticidades do preço, da renda e do crédito em relação à demanda por veículos, sob a luz da teoria da cointegração. Analisando-se o período de junho de 2000 a janeiro de 2014, verifica-se a ocorrência de três quebras estruturais. Estas quebras dividem o intervalo de tempo analisado em quatro subperíodos, cada um com uma dinâmica própria. A constatação deste fato, muitas vezes negligenciado na literatura científica prévia, é um dos principais resultados deste trabalho: afinal, conclusões bastante distintas seriam obtidas ao se considerar o período todo sem quebras. Vale também destacar que o crédito se mostrou relevante para a demanda em todos os subperíodos: acredita-se, portanto, ser efetiva a implementação de uma política de estímulo ao setor, por meio do incentivo ao crédito. Por último, comenta-se que, no passado recente, a cada 1% de redução no preço do automóvel, a demanda aumentou numa proporção 30% maior. Este resultado corrobora com a percepção de que a redução de impostos pode alavancar a venda de veículos.
Resumo:
Os leilões para concessão de blocos de petróleo no Brasil utilizam uma equação para formar a pontuação que define o vencedor. Cada participante deve submeter ao leiloeiro um lance composto por três atributos: Bônus de Assinatura (BA), Programa Exploratório Mínimo (PEM) e Conteúdo Local (CL). Cada atributo possui um peso na equação e a nota final de cada participante também depende dos lances ofertados pelos outros participantes. Apesar de leilões de petróleo serem muito estudados na economia, o leilão multi-atributos, do tipo máxima pontuação, ainda é pouco analisado, principalmente como mecanismo de alocação de direitos minerários. Este trabalho destaca a inserção do CL como atributo que transforma a estrutura, do que poderia ser um leilão simples de primeiro preço, em um leilão multi-atributos de máxima pontuação. Demonstra-se como o CL, através da curva de custos do projeto, está relacionado também ao Bônus de Assinatura, outro importante atributo da equação. Para compreender o impacto do fenômeno da inserção do CL, foram criados três casos de leilões hipotéticos, onde, dentre outras simplificações, o programa exploratório mínimo foi fixado para todas as empresas envolvidas. No caso base (Sem CL), simula-se a estrutura de um leilão de primeiro preço, onde apenas o BA define o vencedor do leilão. Já no caso forçado (CLO=CLR), há inserção do atributo CL, sendo o participante obrigado a cumprir o CL ofertado. Por fim, o caso completo (Com Multa) permite que o participante preveja a aplicação de multa por descumprimento do CL ofertado e, caso haja benefício econômico, descumpra efetivamente o CL ofertado. Considerando estes casos, argumenta-se que, apesar do o lucro das empresas e a eficiência do leilão não serem alterados, a inclusão do conteúdo local na estrutura do leilão pode ter reflexos consideráveis na receita do governo.
Resumo:
Modelos para detecção de fraude são utilizados para identificar se uma transação é legítima ou fraudulenta com base em informações cadastrais e transacionais. A técnica proposta no estudo apresentado, nesta dissertação, consiste na de Redes Bayesianas (RB); seus resultados foram comparados à técnica de Regressão Logística (RL), amplamente utilizada pelo mercado. As Redes Bayesianas avaliadas foram os classificadores bayesianos, com a estrutura Naive Bayes. As estruturas das redes bayesianas foram obtidas a partir de dados reais, fornecidos por uma instituição financeira. A base de dados foi separada em amostras de desenvolvimento e validação por cross validation com dez partições. Naive Bayes foram os classificadores escolhidos devido à simplicidade e a sua eficiência. O desempenho do modelo foi avaliado levando-se em conta a matriz de confusão e a área abaixo da curva ROC. As análises dos modelos revelaram desempenho, levemente, superior da regressão logística quando comparado aos classificadores bayesianos. A regressão logística foi escolhida como modelo mais adequado por ter apresentado melhor desempenho na previsão das operações fraudulentas, em relação à matriz de confusão. Baseada na área abaixo da curva ROC, a regressão logística demonstrou maior habilidade em discriminar as operações que estão sendo classificadas corretamente, daquelas que não estão.
Resumo:
Na modelagem de sistemas complexos, abordagens analíticas tradicionais com equações diferenciais muitas vezes resultam em soluções intratáveis. Para contornar este problema, Modelos Baseados em Agentes surgem como uma ferramenta complementar, onde o sistema é modelado a partir de suas entidades constituintes e interações. Mercados Financeiros são exemplos de sistemas complexos, e como tais, o uso de modelos baseados em agentes é aplicável. Este trabalho implementa um Mercado Financeiro Artificial composto por formadores de mercado, difusores de informações e um conjunto de agentes heterogêneos que negociam um ativo através de um mecanismo de Leilão Duplo Contínuo. Diversos aspectos da simulação são investigados para consolidar sua compreensão e assim contribuir com a concepção de modelos, onde podemos destacar entre outros: Diferenças do Leilão Duplo Contínuo contra o Discreto; Implicações da variação do spread praticado pelo Formador de Mercado; Efeito de Restrições Orçamentárias sobre os agentes e Análise da formação de preços na emissão de ofertas. Pensando na aderência do modelo com a realidade do mercado brasileiro, uma técnica auxiliar chamada Simulação Inversa, é utilizada para calibrar os parâmetros de entrada, de forma que trajetórias de preços simulados resultantes sejam próximas à séries de preços históricos observadas no mercado.