956 resultados para mechanical wood processing
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.
Resumo:
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)
Resumo:
OBJECTIVE: To assess the effect of food restriction (FR) on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR). METHODS: Isolated papillary muscle preparations of the left ventricle (LV) of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY) rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet) for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1) reduction in the body weight and LV weight of SHR and WKY rats; 2) increase in the time to peak shortening and the time to peak developed tension (DT) in the hypertrophied myocardium of the SHR; 3) diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.
Resumo:
The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.
Resumo:
[Excerpt] Introduction: Thermal processing is probably the most important process in food industry that has been used since prehistoric times, when it was discovered that heat enhanced the palatability and the life of the heat-treated food. Thermal processing comprehends the heating of foods at a defined temperature for a certain length of time. However, in some foods, the high thermotolerance of certain enzymes and microorganisms, their physical properties (e.g.,highviscosity),ortheircomponents(e.g.,solidfractions) require the application of extreme heat treatments that not only are energy intensive, but also will adversely affect the nutritional and organoleptic properties of the food. Technologies such as ohmic heating, dielectric heating (which includes microwave heating and radiofrequency heating), inductive heating, and infrared heating are available to replace, or complement, the traditional heat-dependent technologies (heating through superheated steam, hot air, hot water, or other hot liquid, being the heating achieved either through direct contact with those agents – mostly superheated steam – or through contact with a hot surface which is in turn heated by such agents). Given that the “traditional” heatdependent technologies are thoroughly described in the literature, this text will be mainly devoted to the so-called “novel” thermal technologies. (...)
Resumo:
"Available online 28 March 2016"
Resumo:
OBJECTIVE: To analyze the effects of in-hospital reocclusion of reperfused AMI culprit coronary arteries in mortality and to identify the predictors. METHODS: The present study comprises a sample of 155 patients with AMI who underwent successful mechanical reperfusion by direct coronary angioplasty and angiographic control during hospitalization or before discharge. Patients were classified into group A: reoccluded patients (n=30) and group B: non-reoccluded patients (n=125). RESULTS: We identified in-hospital reocclusion predictors and found a greater significance in mortality among reoccluded patients (23,3% x 1.6%; p=0.00004). Silent reocclusion or typical angina at reocclusion had a good prognosis. The independent predictors of in-hospital mortality were hypertension, multiarterial lesions, totally occluded AMI culprit lesions, failed redilatation, failed redilatation in comparison with no intention to redilate, no redilatation in comparison with no atempt to redilate, and reocclusion within the first 48 to 72 hours. The decision to redilate, independently of the result, led to a 50.0% reduction in hospital mortality (p=0.0366). CONCLUSION: In-hospital AMI culprit coronary artery reocclusion had an adverse effect similar to that reported in clinical studies with high mortality rates (23.3% x 1.6%; p=0.00004). The major contribution of this study is to recommend the reopening of reoccluded AMI culprit coronary arteries as a means for the management of coronary artery reocclusion.
Resumo:
OBJECTIVE: To evaluate the immediate results of percutaneous mechanical mitral commissurotomy. METHODS: Thirty patients underwent percutaneous mechanical mitral commissurotomy performed with a Cribier's metallic valvulotome from 8/11/99 to 2/4/00. Mean age was 30.7 years, and 73.3% were women. With regards to functional class, 63.3% were class III, and 36.7% were class IV. The echocardiographic score had a mean value of 7.5± 1.8. RESULTS: The mitral valve area increased from 0.97±0.15cm² to 2.16±0.50cm² (p>0.0001). The mean diastolic gradient decreased from 17.9±5.0mmHg to 3.2±1.4mmHg. The mean left atrial pressure decreased from 23.6±5.4mmHg to 8.6±3.1mmHg, (p>0.0001). Systolic pressure in the pulmonary artery decreased from 52.7±18.3mmHg to 32.2±7.4mmHg. Twenty-nine cases were successful. One patient developed severe mitral regurgitation. Interatrial septal defect was observed and one patient. One patient had cardiac tamponade due to left ventricular perforation. No deaths occurred. CONCLUSION: This method has proven to be safe and efficient in the treatment of rheumatic mitral stenosis. The potential advantage is that it can be used multiple times after sterilization, which decreases procedural costs significantly.
Resumo:
OBJECTIVE: Our aim was to compare, in a non randomized study, the surgical outcome in elderly patients with mechanical (Group 1; n=83) and bioprosthetic valve implants (Group 2; n=136). METHODS: During a three year period, 219 patients >75 years underwent Aortic Valve Replacement. The groups matched according to age, sex, comorbidity, valve pathology and concomitant Coronary Artery Bypass Surgery. Follow-up was a total of 469 patient-years (mean follow-up 2.1 years, maximum 4,4 years). RESULTS: Operative mortality was zero and the overall early mortality was 2.3 % (within 30 days). Actuarial survival was 87.5 ± 4.0% and 66.1 ± 7.7% (NS) at 4 years in Group 1 and Group 2, respectively. Freedom from valve-related death was 88.9 ± 3.8% in Group 1 and 69.9±7.9% (NS) in Group 2 at 4 years. CONCLUSION: Aortic Valve Replacement in the elderly (>75 years) is a safe procedure even in cases where concomitant coronary artery revascularization is performed. Only a few anticoagulant-related complications were reported and this may indicate that selected groups of elderly patients with significant life expectancy may benefit from mechanical implants .
Resumo:
In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Supplementary data associated with this article can be found,in the online version, at http://dx.doi.org/10.1016/j.ijbiomac.2016.05.018.
Resumo:
OBJECTIVE: To investigate whether patients with heart valve prostheses and similar International Normalized Ratios (INR) have the same level of protection against thromboembolic events, that is, whether the anticoagulation intensity is related to the intensity of hypercoagulability supression. METHODS: INR and plasma levels of prothrombin fragment 1+2 (F1+2) were assessed in blood samples of 27 patients (7 with mechanical heart valves and 20 with biological heart valves) and 27 blood samples from healthy donors that were not taking any medication. RESULTS: Increased levels of F1+2 were observed in blood samples of 5 patients with heart valve prostheses taking warfarin. These findings reinforce the idea that even though patients may have INRs, within the therapeutic spectrum, they are not free from new thromboembolic events. CONCLUSION: Determination of the hypercoagulability marker F1+2 might result in greater efficacy and safety for the use of oral anticoagulants, resulting in improved quality of life for patients.