998 resultados para maintain mechanism
Resumo:
Assisted by a mechanical alloying and high-pressure technique, a new W4Mg intermetallic was formed. W4Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the subsequent high-pressure and high-temperature treatment. W4Mg intermetallic was identified as a cubic structure and the lattice parameter was a=0.4150 nm. The synthesis mechanism is also discussed in this paper.
Resumo:
Solvent free polyaniline emeraldine base(EB) corrosion protection coating was prepared, employing aliphatic polyamine as solvent of EB as well as hardener of epoxy resin. This coating passed 2000h of salt fog test when the EB loading was about 1 wt%. The interaction between EB and iron indicated that EB acted as a "quasi-catalyst" to cause the formation of densed iron oxide film in the interface.
Resumo:
The compositions of the extracted complexes of La, Gd, Er and Y with sec-octyl-phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K-M were determined using two-phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA(3) . 2.5HA, GdA(3) . 3HA, ErA(3) . 3.1HA and YA(3) . 4.3HA respectively. And their pK(M) are 3.43, 3.46, 3.08 and 2.58 respectively.
Resumo:
The Yttrium(III) extraction kinetics and mechanism with secnonylphonoxy acetic acid (CA-100) were investigated by a constant interfacial cell with laminar flow. The studies of interfacial tension and solubility of extractant and effects of the stirring rate, temperature, specific interfacial area and species concentration on the extraction rate showed that the extraction regime was dependent on the extraction conditions and the most probable reaction zone was at the liquid-liquid interface. The rate equation of extracting yttrium by CA-100 in heptane was Rf = k[Y3+]((a))[H(2)A(2)]((o))(0.88)[H+]((a))(-1.08).
Resumo:
The plateau modulus of polyphenylquinoxaline (PPQ-E) films has been obtained by from their dynamic mechanical properties curves. Using these data, the entanglement density of PPQ-E films, 2.37 X 10(26) m(-3) Or 0.39mmol/cm(3),has been estimated. The deformation mechanism of polyphenylquinoxaline (crazing mechanism,or shear yielding mechanism, or both), can be predicted according to entanglement density values. The changes in morphology of PPQ-E films during tensile deformation have been observed by Polarized Light Microscope. The result shows that crazing first appears in the tensile process, then shear yielding appears. It needs to point out that the craze is terminated by micro-shear band and the direction of craze in shear band is also changed,which prevents the craze growth into crack and avoid the failure of material. This result is in accordance with the prediction on the basis of the entanglement density data. The morphology and structure of crazes in PPB-E thin film have been determined by TEM. The craze morphology of PPQ-E is mainly fibril craze consisting of micro-fibrils and micro-voids,the interface between bulk and craze is distinct. Multiply crazes, blunting of craze tip and shear deformation zone are also observed. This result reflects the accordance of entanglement density and the morphology and structure of crazes.
Resumo:
The cyclization of cis-1,4 polybutadiene in various solvents (mesitylene,xylene, toluene,benzene and cyclohexane) with the catalyst composed of CH2=CHCH2Cl-AlEt2Cl was studied. The infrared spectra of the cyclized products were investigated. It was shown that the products produced in cyclohexane and mesitylene have infrared spectra identical with those of the original cis-1,4-polybutadiene and the products obtained in other aromatics have infrared spectra different from each other and distinguishing with those of the parent cis-1,4 polybutadiene. The analyses of infrared spectra came to the conclusion that the molecules of aromatic solvent participate in cyclization of cis-1,4 polybutadiene at the given condition. A possible reaction scheme involving an electrophilic substitution of carbonium ions for Ar-H of aromatic solvents was proposed. Some experimental facts were explained with great satisfaction on the basis of the above mechanism.
Resumo:
The catalytic active phase (CAP) of a novel liquid catalyst for isobutane alkylation with butenes was investigated, the composition of the CAP was analysized, The components of the catalytic active phase were separated and examined by the methods of FTIR, UV and NMR etc., On the basis of these results, a reaction mechanism based on the formation of protonated heteropolyacid as an intial stage in the isobutane alkylation with butenes was postulated, which is in agreement with the experimental results.
Resumo:
A four-level decay model in KMgF3:Eu2+ is proposed. The decay profiles of the P-6(7/2) excited state of Eu2+ are biexponential, and the physical implication of each term in the fit equation responsible for the model is interpreted. The evidence obtained spectroscopically for supporting the model is presented. A new method to study energy transfer between Eu2+ and X3+ in KMgF3:Eu-X (X = Gd, Ce, Cr) is established on the basis of the proposed model.
Resumo:
Controlled crystallization of BaF2 under two different kinds of monolayers, octadecylamine [CH3(CH2)(17)NH2] and hexadecanol [CH3(CH2)(14)CH2OH], has been studied by using x-ray diffraction (XRD) and scanning electron microscope. It was found that the monolayer headgroup, the degree of ionization of the headgroup, etc., had a complicated effect on the selectivity of monolayers for crystal and on the morphology and orientation of crystals grown under the compressed monolayers. At pH = 7.0, XRD analysis showed that (100)-oriented BaF2 crystals were formed under the octadecylamine monolayer, while several kinds of crystals were found under the hexadecanol monolayer. In comparison, at pH = 8.5, both (100)-oriented BaF2 and (111)-oriented Ba(NO3)(2) crystals were obtained under the monolayer of octadecylamine. However, crystals formed under hexadecanol monolayer consist of BaF2, Ba(NO3)(2), etc. The detailed mechanism for crystallization was discussed in terms of the specific interaction and lattice matching between the monolayer headgroup and the nucleating species.
Resumo:
In this work, chemical structures and molecular parameters of grafted materials of PP-g-MAH prepared by melt reactive extrusion were studied by using electrospray ionization-mass spectrometer and gel permeation chromatography. It was found that the initial radicals, due to homolitic scission of dicumyl peroxide could be combined with maleic anhydride (MAH) monomers as well as polypropylene (PP) molecular chains. The homopolymerization of MAH cannot occur and the MAH radicals undergo a dismutational reaction under the processing condition (180-190 degreesC). A modified mechanism of melt grafting MAH onto PP has been proposed tentatively on the basis of our experimental results and other experimental findings published in the literature. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports a new observation of the abnormal reduction of Eu3+ --> Eu2+ in Sr2B5O9Cl when prepared in air at high temperature. A model based on the nature of substitution defects is proposed to explain this abnormal reduction. Electrons, which reduced the Eu3+ ions, are created by the substitution of cations first and then transferred to the target Eu3+ ions via tetrahedral berate anion groups. Codoping experiments are designed and performed. The results of these experiments support the model proposed. (C) 1999 Academic Press.
Resumo:
Electrocatalytic mechanism for the electrochemical oxidation of formaldehyde (HCHO) on the highly dispersed Au microparticles electrodeposited on the surface of the glass carbon (GC) electrode in the alkaline Na2CO3/NaHCO3 solution and the surface characteristics of the Au microparticle-modified glass carbon (Au/GC) electrode were studied with in situ FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the final products of HCHO oxidation is HCOO- at the Au/GC electrode and CO2 at the bulk Au electrode. The difference may be ascribed to the different surface characteristics between the Au/GC electrode and the bulk Au electrode. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
By mechanism-transformation (anionic --> cationic) poly(styrene-6-2-ethyl-2-oxazoline) diblock copolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as H-1-NMR, IR, DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight and narrow molecular weight distribution.
Resumo:
Studies for the development of the in-situ microscopic FTIR spectroelectrochemistry (MFTIRS) have been carried out in polyethylene glycol(PEG) polyelectrolyte, Redox reaction mechanisms of various electroactive substances involving inorganic salt, organic compound and inorganic polymeric particles have been studied.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.