913 resultados para lysosomal proteolysis
Resumo:
In plant cells, as in all other cells, proteins are submitted to permanent turnover, and the intracellular content of a given protein depends on its rate of both synthesis and degradation. The life time of most proteins is shorter than that of the cell. Thus, in young leaves of Lemna minor, the average half-life of protein was estimated to be 7 days, and it was shorter under stress conditions (Davies 1982). Such observations mean that nitrogen and amino acid fluxes are both cylic and permanent. Although protein turnover may appear wasteful, in terms of energy, numerous studies have shown that proteolysis provides multiple functions in cell physiology, and is an essential regulatory mechanism of cell metabolism and development.
Resumo:
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade.
Resumo:
Substance P (SP) play a central role in nociceptive transmission and it is an agonist of the Neurokinin-1 receptor located in the lamina I of the spinal cord. SP is a major proteolytic product of the protachykinin-1 primarily synthesized in neurons. Proprotein convertases (PCs) are extensively expressed in the central nervous system (CNS) and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue. The proteolysis control of endogenous protachykinins has a profound impact on pain perception and the role of PCs remain unclear. The objective of this study was to decipher the role of PC1 and PC2 in the proteolysis surrogate protachykinins (i.e. Tachykinin 20-68 and Tachykinin 58-78) using cellular fractions of spinal cords from wild type (WT), PC1-/+ and PC2-/+ animals and mass spectrometry. Full-length Tachykinin 20-68 and Tachykinin 58-78 was incubated for 30 minutes in WT, PC1-/+ and PC2-/+ mouse spinal cord S9 fractions and specific C-terminal peptide fragments were identified and quantified by mass spectrometry. The results clearly demonstrate that both PC1 and PC2 mediate the formation of SP and Tachykinin 58-71, an important SP precursor, with over 50% reduction of the rate of formation in mutant PC 1 and PC2 mouse S9 spinal cord fractions. The results obtained revealed that PC1 and PC2 are involved in the C-terminal processing of protachykinin peptides and suggest a major role in the maturation of the protachykinin-1 protein.
Resumo:
Dynorphins are important neuropeptides with a central role in nociception and pain alleviation. Many mechanisms regulate endogenous dynorphin concentrations, including proteolysis. Proprotein convertases (PCs) are widely expressed in the central nervous system and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue. The proteolysis control of endogenous Big Dynorphin (BDyn) and Dynorphin A (Dyn A) levels has a profound impact on pain perception and the role of PCs remain unclear. The objective of this study was to decipher the role of PC1 and PC2 in the proteolysis control of BDyn and Dyn A levels using cellular fractions of spinal cords from wild type (WT), PC1-/+ and PC2-/+ animals and mass spectrometry. Our results clearly demonstrate that both PC1 and PC2 are involved in the proteolysis regulation of BDyn and Dyn A with a more important role for PC1. C-terminal processing of BDyn generates specific peptide fragments Dynorphin 1-19, Dynorphin 1-13, Dynorphin 1-11 and Dynorphin 1-7 and C-terminal processing of Dyn A generates Dynorphin 1-13, Dynorphin 1-11 and Dynorphin 1-7, all these peptide fragments are associated with PC1 or PC2 processing. Moreover, proteolysis of BDyn leads to the formation of Dyn A and Leu-Enk, two important opioid peptides. The rate of formation of both is significantly reduced in cellular fractions of spinal cord mutant mice. As a consequence, even partial inhibition of PC1 or PC2 may impair the endogenous opioid system.
Resumo:
Breeding individuals enter an emergency life-history stage when their body reserves reach a minimum threshold. Consequently, they redirect current activity toward survival, leading to egg abandonment in birds. Corticosterone (CORT) is known to promote this stage. How and to what extent CORT triggers egg abandonment when breeding is associated with prolonged fasting, however, requires further investigation. We manipulated free-living male Adelie penguins with CORT-pellets before their laying period. We then examined their behavioral response with respect to nest abandonment in parallel with their prolactin levels (regulating parental care), and the subsequent effects of treatment on breeding success in relieved birds. Exogenous CORT triggered nest abandonment in 60% of the treated penguins -14 days after treatment and induced a concomitant decline in prolactin levels. Interestingly, prolactin levels in treated penguins that did not abandon their nest were higher at the point of implantation and also after being relieved by females, when compared with abandoning penguins. Among successful birds, the treatment did not affect the number of chicks, nor the brood mass. Our results show the involvement of CORT in the decision-making process regarding egg abandonment in Adelie penguins when incubation is associated with a natural long fast. However, we suggest that CORT alone is not sufficient to trigger nest abandonment but that 1) prolactin levels need to reach a low threshold value, and 2) a rise in proteolysis (i.e. utilization of protein as main energy substrate) seems also to be required.
Resumo:
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.
Resumo:
Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 It after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C rubecula to negatively impact the proPO activation reaction in its natural host. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Human urotensin-II (hU-II) is processed from its prohormone (ProhU-II) at putative cleavage sites for furin and serine proteases such as trypsin. Although proteolysis is required for biological activity, the endogenous urotensin-converting enzyme (UCE) has not been investigated. The aim of this study was to investigate UCE activity in cultured human cells and in blood, comparing activity with that of furin and trypsin. In a cell-free system, hU-II was detected by high-performance liquid chromatography-mass spectrometry after coincubating 10 muM carboxyl terminal fragment (CTF)-ProhU-II with recombinant furin (2 U/ml, 3 h, 37degreesC) at pH 7.0 and pH 8.5, but not at pH 5.0, or when the incubating medium was depleted of Ca2+ ions and supplemented with 2 mM EDTA at pH 7.0. hU-II was readily detected in the superperfusate of permeabilized epicardial mesothelial cells incubated with CTF-ProhU-II (3 h, 37degreesC), but it was only weakly detected in the superperfusate of intact cells. Conversion of CTF-ProhU-II to hU-II was attenuated in permeabilized cells using conditions found to inhibit furin activity. In a cell-free system, trypsin (0.05 mg/ml) cleaved CTF-ProhU-II to hU-II, and this was inhibited with 35 muM aprotinin. hU-II was detected in blood samples incubated with CTF-ProhU-II (3 h, 37degreesC), and this was also inhibited with aprotinin. The findings revealed an intracellular UCE in human epicardial mesothelial cells with furin-like activity. Aprotinin-sensitive UCE activity was detected in blood, suggesting that an endogenous serine protease such as trypsin may also contribute to proteolysis of hU-II prohormone, if the prohormone is secreted into the circulation.
Resumo:
The folding of HIV gp41 into a 6-helix bundle drives virus-cell membrane fusion. To examine the structural relationship between the 6-helix bundle core domain and other regions of gp41, we expressed in Escherichia coli, the entire ectodomain of HIV-2(ST) gp41 as a soluble, trimeric maltose-binding protein (MBP)/gp41 chimera. Limiting proteolysis indicated that the Cys-591-Cys-597 disulfide-bonded region is outside a core domain comprising two peptides, Thr-529-Trp-589 and Val-604-Ser-666. A biochemical examination of MBP/gp41 chimeras encompassing these core peptides; indicated that the N-terminal polar segment, 521-528, and C-terminal membrane-proximal segment, 658-666, cooperate in stabilizing the ectodomain. A functional interaction between sequences outside the gp41 core may contribute energy to membrane fusion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Plant vacuoles are multi-functional, developmentally varied and can occupy up to 90% of plant cells. The N-terminal propeptide (NTPP) of sweet potato sporamin and the C-terminal propeptide (CTPP) of tobacco chitinase have been developed as models to target some heterologous proteins to vacuoles but so far tested on only a few plant species, vacuole types and payload proteins. Most studies have focused on lytic and protein-storage vacuoles, which may differ substantially from the sugar-storage vacuoles in crops like sugarcane. Our results extend the evidence that NTPP of sporamin can direct heterologous proteins to vacuoles in diverse plant species and indicate that sugarcane sucrose-storage vacuoles (like the lytic vacuoles in other plant species) are hostile to heterologous proteins. A low level of cytosolic NTPP-GFP (green fluorescent protein) was detectable in most cell types in sugarcane and Arabidopsis, but only Arabidopsis mature leaf mesophyll cells accumulated NTPP-GFP to detectable levels in vacuoles. Unexpectedly, efficient developmental mis-trafficking of NTPP-GFP to chloroplasts was found in young leaf mesophyll cells of both species. Vacuolar targeting by tobacco chitinase CTPP was inefficient in sugarcane, leaving substantial cytoplasmic activity of rat lysosomal beta-glucuronidase (GUS) [ER (endoplasmic reticulum)-RGUS-CTPP]. Sporamin NTPP is a promising targeting signal for studies of vacuolar function and for metabolic engineering. Such applications must take account of the efficient developmental mis-targeting by the signal and the instability of most introduced proteins, even in storage vacuoles.
Resumo:
Hookworms feed on blood, but the mechanism by which they lyse ingested erythrocytes is unknown. Here we show that Ancylostoma caninum, the common dog hookworm, expresses a detergent soluble, haemolytic factor. Activity was identified in both adult and larval stages, was heat-stable and unaffected by the addition of protease inhibitors, metal ions, chelators and reducing agents. Trypsin ablated lysis indicating that the haemolysin is a protein. A closely migrating doublet of hookworm proteins with apparent molecular weights of 60-65 kDa bound to the erythrocyte membrane after lysis of cells using both unlabeled and biotinylated detergent-solubilised hookworm extracts. In addition, separation of detergent-soluble parasite extracts using strong cation-exchange chromatography, resulted in purification of 60-65 kDa proteins with trypsin-sensitive haemolytic activity. Erythrocytes lysed with particulate, buffer-insoluble worm extracts were observed using scanning electron microscopy and appeared as red cell ghosts with approximately 100 nm diameter pores formed in the cell membranes. Red blood cell ghosts remained visible indicating that lysis was likely caused by pore formation and followed by osmotic disruption of the cell. (C) 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of high power ultrasound waves on physical, biochemical, and microbial properties of meat have been the subject of a great deal of interest in recent years. The present review details the basic principles underlying the effects of ultrasound on the properties of food systems, followed by discussion of specific effects of high power ultrasound on meat products, including muscle, cellular, and subcellular components. In addition, the specific effects of high power ultrasound on the following parameters are discussed: enzyme activities and efficiencies, muscle proteolysis, quality criteria such as tenderness; extraction of protein, gelation, and restructuring of meat products and germicidal properties against meat micro-organisms.
Resumo:
The cyclotides constitute a recently discovered family of plant-derived peptides that have the unusual features of a head-to-tail cyclized backbone and a cystine knot core. These features are thought to contribute to their exceptional stability, as qualitatively observed during experiments aimed at sequencing and characterizing early members of the family. However, to date there has been no quantitative study of the thermal, chemical, or enzymatic stability of the cyclotides. In this study, we demonstrate the stability of the prototypic cyclotide kalata B1 to the chaotropic agents 6 M guanidine hydrochloride (GdHCl) and 8 M urea, to temperatures approaching boiling, to acid, and following incubation with a range of proteases, conditions under which most proteins readily unfold. NMR spectroscopy was used to demonstrate the thermal stability, while fluorescence and circular dichroism were used to monitor the chemical stability. Several variants of kalata B1 were also examined, including kalata 132, which has five amino acid substitutions from B1, two acyclic permutants in which the backbone was broken but the cystine knot was retained, and a two-disulfide bond mutant. Together, these allowed determinations of the relative roles of the cystine knot and the circular backbone on the stability of the cyclotides. Addition of a denaturant to kalata B1 or an acyclic permutant did not cause unfolding, but the two-disulfide derivative was less stable, despite having a similar three-dimensional structure. It appears that the cystine knot is more important than the circular backbone in the chemical stability of the cyclotides. Furthermore, the cystine knot of the cyclotides is more stable than those in similar-sized molecules, judging by a comparison with the conotoxin PVIIA. There was no evidence for enzymatic digestion of native kalata B1 as monitored by LC-MS, but the reduced form was susceptible to proteolysis by trypsin, endoproteinase Glu-C, and thermolysin. Fluorescence spectra of kalata B1 in the presence of dithiothreitol, a reducing agent, showed a marked increase in intensity thought to be due to removal of the quenching effect on the Trp residue by the neighboring Cys5-Cys17 disulfide bond. In general, the reduced peptides were significantly more susceptible to chemical or enzymatic breakdown than the oxidized species.