994 resultados para liver enzyme
Resumo:
Five functional mammalian facilitated hexose carriers (GLUTs) have been characterized by molecular cloning. By functional expression in heterologous systems, their specificity and affinity for different hexoses have been defined. There are three high-affinity transporters (GLUT-1, GLUT-3 and GLUT-4) and one low-affinity transporter (GLUT-2), and GLUT-5 is primarily a fructose carrier. Because their Michaelis constants (Km) are below the normal blood glucose concentration, the high-affinity transporters function at rates close to maximal velocity. Thus their level of cell surface expression greatly influences the rate of glucose uptake into the cells. In contrast, the rate of glucose uptake by GLUT-2 (Km = 17 mM) increases in parallel with the rise in blood glucose over the physiological concentration range. High-affinity transporters are found in almost every tissue, but their expression is higher in cells with high glycolytic activity. Glut-2, however, is found in tissues carrying large glucose fluxes, such as intestine, kidney, and liver. As an adaptive response to variations in metabolic conditions, the expression of these transporters is regulated by glucose and different hormones. Thus, because of their specific characteristics and regulated expression, the facilitated glucose transporters control fundamental aspects of glucose homeostasis. I review data pertaining to the structure and regulated expression of the glucose carriers present in intestine, kidney, and liver and discuss their role in the control of glucose flux into or out of these different tissues.
Resumo:
Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.
Resumo:
Summary : During vertebrate embryonic development, the endoderm gives rise to the digestive tract and associated organs such as thyroid, lung, liver and pancreas. Earlier studies have shown that extracellular signals coming from the lateral plate mesoderm pattern the endoderm along the antero-posterior axis specifying different organ primordia. An early sign of patterning is the expression of organ-specific genes in restricted endoderm domains. In this study, we focused on the role of the retinoic acid (RA) signaling pathway in the regionalization of the future gut tube along the main body axis. We show that the RA-synthesizing enzyme Raldh2 is expressed in mesoderm close to the endoderm during gastrulation and during somitogenesis. During the same period, all retinoic acid receptors (RARs), which directly activate gene transcription, are expressed in endoderm suggesting that endoderm can be responsive to RA. Activation or inhibition of RA signaling was achieved by adding RA or RAR inhibitors tither on beads or in the medium to cultured chick embryos. Branchial arch (BA) endoderm markers were shifted posteriorly upon depletion of RA at gastrulation, but were not shifted after this stage. Conversely, exposure to exogenous RA repressed the most-anterior BA markers and shifted more posterior BA markers anteriorly. This suggests that graded levels of RA activity in the foregut define gene boundaries and expression levels. The posterior foregut and midget markers Pdxl and CdxA require RA for their expression, but elevated RA does not shift their expression domain along the antero-posterior axis. In addition, we investigated if RA signaling pathway interacts with other signaling pathways to pattern the endoderm. Although both RA and FGFs block anterior foregut marker expression, our experiments suggest that FGF signaling does not depend on RA in anterior endoderm. To validate our chick data in mammalians and evaluate whether RA acts directly on endoderm, we have further generated a conditional loss-of-function system in the mouse, which is still under examination.
Resumo:
The aim of this study was to develop an in-house enzyme-linked immunosorbent assay (ELISA) for the serological diagnosis of ringworm infection in cattle. We used available recombinant forms of Trichophyton rubrum dipeptidyl peptidase V (TruDppV) and T. rubrum leucin aminopeptidase 2 (TruLap2), which are 98% identical to Trichophyton verrucosum orthologues. Field serum samples from 135 cattle with ringworm infection, as confirmed by direct microscopy, fluorescence microscopy, and PCR, and from 55 cattle without any apparent skin lesions or history of ringworm infection that served as negative controls were used. Sensitivities, specificities, and positive and negative predictive values were determined to evaluate the diagnostic value of our ELISA. Overall, the ELISAs based on recombinant TruDppV and TruLap2 discriminated well between infected animals and healthy controls. Highly significant differences (P < 0.0001, Mann-Whitney U test) were noted between optical density values obtained when sera from infected versus control cattle were tested. The ELISA developed for the detection of specific antibodies against DppV gave 89.6% sensitivity, 92.7% specificity, a 96.8% positive predictive value, and a 78.4% negative predictive value. The recombinant TruLap2-based ELISA displayed 88.1% sensitivity, 90.9% specificity, a 95.9% positive predictive value, and a 75.7% negative predictive value. To the best of our knowledge, this is the first ELISA based on recombinant antigens for assessing immune responses to ringworm infection in cattle; it is particularly suitable for epidemiological studies and also for the evaluation of vaccines and/or vaccination procedures.
Resumo:
Xenopus laevis oocytes were used to assay for trans-acting factors shown previously to be involved in the liver-specific regulation of the vitellogenin genes in vitro. To this end, crude liver nuclear extracts obtained from adult estrogen-induced Xenopus females were fractionated by heparin-Sepharose chromatography using successive elutions with 0.1, 0.35, 0.6, and 1.0 M KCl. When these four fractions were injected into oocytes, only the 0.6-M KCl protein fraction significantly stimulated mRNA synthesis from the endogenous B class vitellogenin genes. This same fraction induced estrogen-dependent in vitro transcription from the vitellogenin B1 promoter, suggesting that it contains at least a minimal set of basal transcription factors as well as two positive factors essential for vitellogenin in vitro transcription, i.e. the NF-I-like liver factor B and the estrogen receptor (ER). The presence of these two latter factors was determined by footprinting and gel retardation assays, respectively. In contrast, injection of an expression vector carrying the sequence encoding the ER was unable to activate transcription from the oocyte chromosomal vitellogenin genes. This suggests that the ER alone cannot overcome tissue-specific barriers and that one or several additional liver components participate in mediating tissue-specific expression of the vitellogenin genes. In this respect, we present evidence that the oocyte germinal vesicles contain an NF-I-like activity different from that found in hepatocytes of adult frogs. This observation might explain the lack of vitellogenin gene activation in oocytes injected with the ER cDNA only.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
De Gottardi A, Hilleret M-N, Gelez P, La Mura V, Guillaud O, Majno P, Hadengue A, Morel P, Zarski J-P, Fontana M, Moradpour D, Mentha G, Boillot O, Leroy V, Giostra E, Dumortier J. Injection drug use before and after liver transplantation: a retrospective multicenter analysis on incidence and outcome. Clin Transplant 2009 DOI: 10.1111/j.1399-0012.2009.01121.x.Background and aims: Injecting drug use (IDU) before and after liver transplantation (LT) is poorly described. The aim of this study was to quantify relapse and survival in this population and to describe the causes of mortality after LT. Methods: Past injection drug users were identified from the LT listing protocols from four centers in Switzerland and France. Data on survival and relapse were collected and used for uni- and multivariate analysis. Results: Between 1988 and 2006, we identified 59 patients with a past history of IDU. The mean age at transplantation was 42.4 yr and the majority of patients were men (84.7%). The indication for LT was for the vast majority viral cirrhosis accounting for 91.5% of cases, while alcoholic cirrhosis was 5.1%. There were 16.9% of patients who had a substitution therapy before and 6.8% who continued after LT. Two patients (3.4%) relapsed into IDU after LT and died at 18 and 41 months. The mean follow-up was 51 months. Overall survival was 84%, 66%, and 61% at 1, 5, and 10 yr after transplantation. Conclusions: Documented IDU was rare in liver transplanted patients. Past IDU was not associated with poorer survival after LT, and relapse after LT occurred in 3.4%.
Resumo:
Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.
Resumo:
OBJECTIVE: To evaluate the antihypertensive efficacy of sinorphan, an orally active inhibitor of neutral endopeptidase EC 3.4.24.11. DESIGN: The ability of sinorphan (100 mg twice a day) to lower blood pressure was compared with that of the angiotensin converting enzyme (ACE) inhibitor captopril (25 mg twice a day) using a randomized-sequence, double-blind crossover design in 16 patients with essential hypertension. Each treatment was administered for 4 weeks and treatments were separated by a 3-week placebo period. At the end of the last phase of treatment sinorphan was combined with captopril for a further 4-week period. The changes in systolic (SBP) and diastolic blood pressure (DBP) were monitored using repeated ambulatory blood pressure monitoring. RESULTS: When given as monotherapy for 4 weeks, neither sinorphan nor captopril significantly reduced the 24-h or the 14-h daytime mean SBP or DBP. However, a significant decrease in DBP was observed during the first 6 h after the morning administration of captopril. With sinorphan only a significant decrease in night-time SBP was found. With the combined therapy of sinorphan and captopril, significant decreases both in SBP and in DBP were observed, which were sustained over 24 h. After 4 weeks of sinorphan alone or in combination with captopril, no change in plasma atrial natriuretic peptide level was found. However, urinary cyclic GMP excretion increased transiently after administration of the neutral endopeptidase inhibitor. CONCLUSIONS: Neutral endopeptidase inhibition with sinorphan has a limited effect on blood pressure in hypertensive patients when given alone. However, simultaneous neutral endopeptidase and ACE inhibition induces a synergistic effect, and might therefore represent an interesting new therapeutic approach to the treatment of essential hypertension.
Resumo:
The pharmacokinetic and pharmacodynamic properties of nonpeptide angiotensin antagonists in humans are reviewed in this paper. Representatives of this new therapeutic class share common features: lipophilia, intermediate bioavailability, high affinity for plasma proteins and liver metabolism; some have active metabolites. Angiotensin II antagonists block the blood pressure response to exogenous angiotensin II in healthy volunteers, decrease baseline blood pressure in both normal and hypertensive patients, produce a marked rise in plasma renin activity and endogenous angiotensin II and increase renal blood flow without altering glomerular filtration rate. These effects are dose-dependent, but their time course varies between the drugs owing to pharmacokinetic and pharmacodynamic differences. Additionally, the extent of blood pressure reduction is dependent on physiological factors such as sodium and water balance. The characterisation of their pharmacokinetic-pharmacodynamic relationships deserves further refinement for designing optimal therapeutic regimens and proposing dosage adaptations in specific conditions.
Resumo:
Introduction La maladie « Non-Alcoholic Fatty Liver Disease ; NAFLD » et l'obésité provoque la résistance à l'insuline, un symptôme caractéristique du syndrome métabolique. La fréquence de ces maladies a augmenté de manière importante durant ces dernières décennies. Cette augmentation est étroitement liée à la surcharge énergétique dans notre culture modernisée. Pour combattre cette situation, des régimes riches en protéines semblent être bénéfiques, en particulier parce que l'acide aminé leucine stimule la satiété. Cependant l'effet des protéines alimentaires sur la stéatose hépatique reste peu connu. Résultats : Pour étudier cette question, nous avons nourri des souris C57B6/J (âgées de 5 semaines) avec un régime standard (10% kcal graisse, 20% kcal protéine), un régime riche en graisse (45% kcal graisse, 20% kcal protéine) ou un régime riche en graisse et enrichi en protéines (45% kcal graisse, 40% kcal protéine) pendant 10 semaines. Nous avons ainsi montré que l'addition de protéines au régime gras permet de prévenir la stéatose hépatique. Dans un deuxième temps nous avons testé si cet effet bénéfique des protéines alimentaires provient des acides aminés ramifiés (Branched-chain amino acids= BCAA : leucine, isoleucine, valine), composants majeurs de protéines alimentaires. Pour ce faire, nous avons ajouté un groupe de souris nourries au régime riche en graisses + BCAA (45% kcal graisse, 23% kcal protéine). Nos résultats montrent que l'addition des BCAA ne protège pas contre la stéatose hépatique, mais, au contraire, aggrave l'obésité et l'hyperinsulinémie. De manière intéressante, nous avons observé que la supplémentation en protéines ou en BCAA induit des effets différents sur la prise alimentaire et la dépense énergétique. Conclusion : Notre étude suggère clairement que les protéines alimentaires protègent contre l'obésité et la stéatose hépatique. Elle confirme également que les composants majeurs des protéines alimentaires (BCAA) n'exercent pas cet effet protecteur, mais qu'il aggrave le syndrome métabolique. Etant donné que l'ingestion importante et chronique de protéines alimentaires est délétère pour le rein, il serait très intéressant d'identifier les acides aminés spécifiques qui induiraient le même effet protecteur que les protéines alimentaires, mais sans perturber le fonctionnement rénal.
Resumo:
Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.
Resumo:
Background: The « reversed treatment» approach inverts the treatment sequence of¦advanced synchronous colorectal liver metastases - i.e. the liver metastasis is¦treated first, followed by resection of the primary tumor. Chemotherapy is performed¦before and after liver surgery. We recently started to use a reversed treatment¦approach in selected patients. The aim of this study is to critically assess this new¦treatment modality.¦Methods: Nine patients (7 male, 2 female, mean age 62 years) benefited from this¦new treatment between November 2008 and May 2010. The data were collected¦retrospectively.¦Results: All patients responded to the neoadjuvant chemotherapy. The median¦number of liver metastases was 6 (range 1 - 22). The median size of the largest liver¦metastases was 4.3 cm (range 2.6 - 13 cm). Three patients had portal vein¦embolization prior to liver surgery. Two patients could not complete the treatment.¦One had to undergo emergency surgery for occluding colonic tumor. The second one¦showed liver recurrence before starting the adjuvant chemotherapy. The seven¦patients who completed the treatment are still alive after a median time of 27 months¦(range 17 - 37 months). Seven of them had recurrence (1 rectal, 6 liver). The median¦disease-free survival was 9 months (range 0 - 17 months).¦Conclusion: Based on our preliminary experiences, the reversed strategy shows¦encouraging results for the treatment of advanced synchronous colorectal liver¦metastases in well selected patients. The treatment was generally well tolerated and¦long term survival seems to be prolonged.
Resumo:
(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.