990 resultados para line-drawing
Resumo:
Background: When cure is impossible, cancer treatment should focus on both length and quality of life. Maximisation of time without toxic effects could be one effective strategy to achieve both of these goals. The COIN trial assessed preplanned treatment holidays in advanced colorectal cancer to achieve this aim. Methods: COIN was a randomised controlled trial in patients with previously untreated advanced colorectal cancer. Patients received either continuous oxaliplatin and fluoropyrimidine combination (arm A), continuous chemotherapy plus cetuximab (arm B), or intermittent (arm C) chemotherapy. In arms A and B, treatment continued until development of progressive disease, cumulative toxic effects, or the patient chose to stop. In arm C, patients who had not progressed at their 12-week scan started a chemotherapy-free interval until evidence of disease progression, when the same treatment was restarted. Randomisation was done centrally (via telephone) by the MRC Clinical Trials Unit using minimisation. Treatment allocation was not masked. The comparison of arms A and B is described in a companion paper. Here, we compare arms A and C, with the primary objective of establishing whether overall survival on intermittent therapy was non-inferior to that on continuous therapy, with a predefined non-inferiority boundary of 1·162. Intention-to-treat (ITT) and per-protocol analyses were done. This trial is registered, ISRCTN27286448. Findings: 1630 patients were randomly assigned to treatment groups (815 to continuous and 815 to intermittent therapy). Median survival in the ITT population (n=815 in both groups) was 15·8 months (IQR 9·4—26·1) in arm A and 14·4 months (8·0—24·7) in arm C (hazard ratio [HR] 1·084, 80% CI 1·008—1·165). In the per-protocol population (arm A, n=467; arm C, n=511), median survival was 19·6 months (13·0—28·1) in arm A and 18·0 months (12·1—29·3) in arm C (HR 1·087, 0·986—1·198). The upper limits of CIs for HRs in both analyses were greater than the predefined non-inferiority boundary. Preplanned subgroup analyses in the per-protocol population showed that a raised baseline platelet count, defined as 400 000 per µL or higher (271 [28%] of 978 patients), was associated with poor survival with intermittent chemotherapy: the HR for comparison of arm C and arm A in patients with a normal platelet count was 0·96 (95% CI 0·80—1·15, p=0·66), versus 1·54 (1·17—2·03, p=0·0018) in patients with a raised platelet count (p=0·0027 for interaction). In the per-protocol population, more patients on continuous than on intermittent treatment had grade 3 or worse haematological toxic effects (72 [15%] vs 60 [12%]), whereas nausea and vomiting were more common on intermittent treatment (11 [2%] vs 43 [8%]). Grade 3 or worse peripheral neuropathy (126 [27%] vs 25 [5%]) and hand—foot syndrome (21 [4%] vs 15 [3%]) were more frequent on continuous than on intermittent treatment. Interpretation: Although this trial did not show non-inferiority of intermittent compared with continuous chemotherapy for advanced colorectal cancer in terms of overall survival, chemotherapy-free intervals remain a treatment option for some patients with advanced colorectal cancer, offering reduced time on chemotherapy, reduced cumulative toxic effects, and improved quality of life. Subgroup analyses suggest that patients with normal baseline platelet counts could gain the benefits of intermittent chemotherapy without detriment in survival, whereas those with raised baseline platelet counts have impaired survival and quality of life with intermittent chemotherapy and should not receive a treatment break.
Resumo:
We have conducted a sensitive 3mm observation toward the shocked region, Lynds 1157 B1, which is an interaction spot between a molecular outflow and its ambient gas. We have successfully detected the CH3CHO, HCOOCH3, and HCOOH lines, as well as the CH2DOH line. The abundances of these molecules relative to CH3OH are found to be lower than those in the low-mass star-forming core, IRAS 16293-2422. Since these molecules are thought to evaporate from grain mantles, the observational results mean that complex molecules are less abundant in grain mantles residing in the ambient cloud surrounding a prestellar/protostellar core. Instead, efficient formation of the complex organic species and deuterated species should take place in a prestellar/protostellar core. The present result verifies the importance of an unbiased line survey of this source.
Resumo:
In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.
Resumo:
Finite conductivity in superconductors is taken into account by approximate boundary conditions imposed directly when deriving pair summatory equations, which are solved using the Galerkin method and the basis describing the edge singularity.
Resumo:
Spectroscopic observations of 51 Pegasi and tau Bootis show no periodic changes in the shapes of their line profiles; these results for 51 Peg are in significant conflict with those reported by Gray & Hatzes. Our detection limits are small enough to rule out nonradial pulsations as the cause of the variability in tau Boo, but not in 51 Peg. The absence of line shape changes is consistent with these stars' radial velocity variability arising from planetary mass companions.
Resumo:
The stars 51 Pegasi and tau Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line lambda 6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and tau Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 sigma ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. tau Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.
Resumo:
We have used the JCMT to survey molecular line emission towards 14 ultracompact HII regions (G5.89, G9.62, G10.30, G10.47, G12.21, G13.87, G29.96, G31.41, G34.26, G43.89, G45.12, G45.45, G45.47, and G75.78). For each source, we observed up to ten 1 GHz bands between 200 and 350 GHz, covering lines of more than 30 species including multiple transitions of CO isotopes, CH3OH, CH3CCH, CH3CN and HCOOCH3, and sulphuretted molecules. The number of transitions detected varied by a factor of 20 between sources; which were chosen following observations of high-excitation ammonia (Cesaroni et al. 1994a) and methyl cyanide (Olmi et al. 1993). In half our sample (the line-poor sources), only (CO)-O-17: (CO)-O-18, SO, (CS)-S-34 and CH3OH were detected. In the line-rich sources, we detected over 150 lines, including high excitation lines of CH3CN, HCOOCH3; C2H5CN, CH3OH, and CH3CCH. We have calculated the physical conditions of the molecular gas. To reproduce the emission from the line-rich sources requires both a hot, dense compact core and an ambient cloud consisting of less dense, cooler gas. The hot cores, which are less than 0.1 pc in size; reach densities of at least 10(8) cm(-3) and temperatures of more than 80 K. The line-poor sources can be modelled without a hot core by a 20-30 K, 10(5) cm(-3) cloud. We find no correlation between the size of the HII region and the current physical conditions in the molecular environment. A comparison with chemical models (Millar et al. 1997) confirms that grain surface chemistry is important in hot cores.
Resumo:
We have surveyed the frequency band 218.30-263.55 GHz toward the core positions N and M and the quiescent cloud position NW in the Sgr B2 molecular cloud using the Swedish-ESO Submillimetre Telescope. In total 1730, 660, and 110 lines were detected in N, M, and NW, respectively, and 42 different molecular species were identified. The number of unidentified lines are 337, 51, and eight. Toward the N source, spectral line emission constitutes 22% of the total detected flux in the observed band, and complex organic molecules are the main contributors. Toward M, 14% of the broadband flux is caused by lines, and SO2 is here the dominant source of emission. NW is relatively poor in spectral lines and continuum. In this paper we present the spectra together with tables of suggested line identifications.
Resumo:
A novel Class-E power amplifier (PA) topology with transmission-line load network is presented in this brief. When compared with the classic Class-E topology, the new circuit can increase the maximum operating frequency up to 50% higher without trading the other Class-E figures of merit. Neither quarterwave line/massive radio-frequency choke for collector/drain biasing nor additional fundamental-frequency output matching circuit are needed in the proposed PA, thus resulting in a compact design. Closed-form formulations are derived and verified by simulations with practical design limitations carefully taken into consideration and good agreement achieved.
Resumo:
Context. Radiative transfer calculations have predicted intensity enhancements for optically thick emission lines, as opposed to the normal intensity reductions, for astrophysical plasmas under certain conditions. In particular, the results are predicted to be dependent both on the geometry of the emitting plasma and the orientation of the observer. Hence in principle the detection of intensity enhancement may provide a way of determining the geometry of an unresolved astronomical source.
Aims. To investigate such enhancements we have analysed a sample of active late-type stars observed in the far ultraviolet spectral region.
Methods. Emission lines of O vi in the FUSE satellite spectra of ϵ Eri, II Peg and Prox Cen were searched for intensity enhancements due to opacity.
Results. We have found strong evidence for line intensity enhancements due to opacity during active or flare-like activity for all three stars. The O vi 1032/1038 line intensity ratios, predicted to have a value of 2.0 in the optically thin case, are found to be up to ~30% larger during several orbital phases.
Conclusions. Our measurements, combined with radiative transfer models, allow us to constrain both the geometry of the O vi emitting regions in our stellar sources and the orientation of the observer. A spherical emitting plasma can be ruled out, as this would lead to no intensity enhancement. In addition, the theory tells us that the line-of-sight to the plasma must be close to perpendicular to its surface, as observations at small angles to the surface lead to either no intensity enhancement or the usual line intensity decrease over the optically thin value. For the future, we outline a laboratory experiment, that could be undertaken with current facilities, which would provide an unequivocal test of predictions of line intensity enhancement due to opacity, in particular the dependence on plasma geometry.