844 resultados para life history interviews


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grassland ecosystems comprise a major portion of the earth’s terrestrial surface, ranging from high-input cultivated monocultures or simple species mixtures to relatively unmanaged but dynamic systems. Plant pathogens are a component of these systems with their impact dependent on many interacting factors, including grassland species population dynamics and community composition, the topics covered in this paper. Plant pathogens are affected by these interactions and also act reciprocally by modifying their nature. We review these features of disease in grasslands and then introduce the 150-year long-term Park Grass Experiment (PGE) at Rothamsted Research in the UK. We then consider in detail two plant-pathogen systems present in the PGE, Tragopogon pratensis-Puccinia hysterium and Holcus lanata-Puccinia coronata. These two systems have very different life history characteristics: the first, a biennial member of the Asteraceae infected by its host-specific, systemic rust; the second, a perennial grass infected by a host-non-specific rust. We illustrate how observational, experimental and modelling studies can contribute to a better understanding of population dynamics, competitive interactions and evolutionary outcomes. With Tragopogon pratensis-Puccinia hysterium, characterised as an “outbreak” species in the PGE, we show that pathogen-induced mortality is unlikely to be involved in host population regulation; and that the presence of even a short-lived seed-bank can affect the qualitative outcomes of the host-pathogen dynamics. With Holcus lanata-Puccinia coronata, we show how nutrient conditions can affect adaptation in terms of host defence mechanisms, and that co-existence of competing species affected by a common generalist pathogen is unlikely.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow–fast continuum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Life history parameters and reproductive behaviors of the harlequin bug, Murgantia histrionica Hahn (Heteroptera: Pentatomidae), were determined. Total developmental time from egg to adult was ≈48 d. After a sexual maturation period of ≈7 d, both sexes mated repeatedly, with females laying multiple egg masses of 12 eggs at intervals of 3 d. Adult females lived an average of 41 d, whereas adult males lived an average of 25 d. Courtship and copulation activities peaked in the middle of the photophase. In mating experiments in which mixed sex pairs of virgin and previously mated bugs were combined in all possible combinations, the durations of courtship and copulation by virgin males were significantly longer with both virgin and previously mated females than the same behaviors for previously mated males. When given a choice between a virgin or previously mated female, previously mated males preferred to mate with virgin females, whereas virgin males showed no preference for virgin over previously mated females. Analyses of mating behaviors with ethograms and behavioral transition matrices suggested that a primary reason for failure to copulate by virgin males was the incorrect rotation of their pygophores to the copulation position, so that successful alignment of the genitalia could not occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Comparative analyses are used to address the key question of what makes a species more prone to extinction by exploring the links between vulnerability and intrinsic species’ traits and/or extrinsic factors. This approach requires comprehensive species data but information is rarely available for all species of interest. As a result comparative analyses often rely on subsets of relatively few species that are assumed to be representative samples of the overall studied group. 2. Our study challenges this assumption and quantifies the taxonomic, spatial, and data type biases associated with the quantity of data available for 5415 mammalian species using the freely available life-history database PanTHERIA. 3. Moreover, we explore how existing biases influence results of comparative analyses of extinction risk by using subsets of data that attempt to correct for detected biases. In particular, we focus on links between four species’ traits commonly linked to vulnerability (distribution range area, adult body mass, population density and gestation length) and conduct univariate and multivariate analyses to understand how biases affect model predictions. 4. Our results show important biases in data availability with c.22% of mammals completely lacking data. Missing data, which appear to be not missing at random, occur frequently in all traits (14–99% of cases missing). Data availability is explained by intrinsic traits, with larger mammals occupying bigger range areas being the best studied. Importantly, we find that existing biases affect the results of comparative analyses by overestimating the risk of extinction and changing which traits are identified as important predictors. 5. Our results raise concerns over our ability to draw general conclusions regarding what makes a species more prone to extinction. Missing data represent a prevalent problem in comparative analyses, and unfortunately, because data are not missing at random, conventional approaches to fill data gaps, are not valid or present important challenges. These results show the importance of making appropriate inferences from comparative analyses by focusing on the subset of species for which data are available. Ultimately, addressing the data bias problem requires greater investment in data collection and dissemination, as well as the development of methodological approaches to effectively correct existing biases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source 4 population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to nonacclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drought events are projected to increase in frequency and magnitude, which may alter the composition of ecological communities. Using a functional community metric that describes abundance, life history traits and conservation status, based upon Grime’s CSR (Competitive-Stress tolerant-Ruderal)¬ scheme, we investigated how British butterfly communities changed during an extreme drought in 1995. Throughout Britain, the total abundance of these insects had a significant tendency to increase, accompanied by substantial changes in community composition, particularly in more northerly, wetter sites. Communities tended to shift away from specialist, vulnerable species, and towards generalist, widespread species and, in the year following, communities had yet to return to equilibrium. Importantly, heterogeneity in surrounding landscapes mediated community responses to the drought event. Contrary to expectation, however, community shifts were more extreme in areas of greater topographic diversity, whilst land-cover diversity buffered community changes and limited declines in vulnerable specialist butterflies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life-history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial or detrimental, effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions the constraints on life-history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favoured increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Species of Gracilaria are some of the most useful algae in the world for the production of agar. As a consequence of its economic importance, the genus has been the subject of many studies worldwide. Color variants of Gracilaria birdiae have been found in the natural population on the Brazilian coast, and they have also been isolated from plants cultivated in laboratory. These findings raised new questions regarding intraspecific variation and the prospects of cultivating such variants for their agar production. Therefore, this work aimed to determine the mode of color inheritance for two G. birdiae strains: a greenish-brown strain (gb) found in a natural population and a green strain (gr) which had arisen as a spontaneous mutation in a red plant cultured in the laboratory. The pigment contents of these strains, as well as the red wildtype (rd), were also characterized. Crosses between female and male plants of the same color (rd, gr, or gb) and between different colors were performed. Crosses between plants of the same color showed tetrasporophytic and gametophytic descendents of the parental color. Recessive nuclear inheritance was found in the greenish-brown strain, and cytoplasmic maternal inheritance was found in the green strain; both had lower phycoerythrin and higher concentrations of allophycocyanin and phycocyanin than the wild-type. Chlorophyll a contents were similar among all strains. Taken together, our results contribute to knowledge about the variability of this important red algae. In addition, since greenish-brown and green strains showed stability of color, both could be selected and tested in experimental sea cultivation to evaluate if mutants have advantageous performance when compared with red strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most amphibian species have biphasic life histories and undergo an ontogenetic shift from aquatic to terrestrial habitats. In deforested landscapes, streams and forest fragments are frequently disjunct, jeopardizing the life cycle of forest-associated amphibians with aquatic larvae. We tested the impact of habitat split-defined as human-induced disconnection between habitats used by different life-history stages of a species-on four forest-associated amphibian species in a severely fragmented landscape of the Brazilian Atlantic Forest. We surveyed amphibians in forest fragments with and without streams (referred to as wet and dry fragments, respectively), including the adjacent grass-field matrix. Our comparison of capture rates in dry fragments and nearby streams in the matrix allowed us to evaluate the number of individuals that engaged in high-risk migrations through nonforested habitats. Adult amphibians moved from dry fragments to matrix streams at the beginning of the rainy season, reproduced, and returned at the end of the breeding period. Juveniles of the year moved to dry fragments along with adults. These risky reproductive migrations through nonforested habitats that expose individuals to dehydration, predation, and other hazards may cause population declines in dry fragments. Indeed, capture rates were significantly lower in dry fragments compared with wet fragments. Declining amphibians would strongly benefit from investments in the conservation and restoration of riparian vegetation and corridors linking breeding and nonbreeding areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A relatively large amount of variation occurs in the reproductive ecology of tropical snakes, and this variation is generally regarded as being a consequence of seasonality in climate and prey availability. In some groups, even closely related species may differ in their reproductive ecology; however, in others it seems to be very conservative. Here we explore whether characters related to reproduction are phylogenetically constrained in a monophyletic group of snakes, the subfamily Dipsadinae, which ranges from Mexico to southern South America. We provide original data on reproduction for Leptodeira annulata, Imantodes cenchoa, and three species of Sibynomorphus from southern, southeastern and central Brazil, and data from literature for other species and populations of dipsadines. Follicular cycles were seasonal in Atractus reticulatus, Dipsa, albifrons, Hypsiglena torquata, Leptodeira maculata, L. punctata, Sibynomorphus spp. and Sibon sanniola from areas where climate is seasonal. In contrast, extended or continuous follicular cycles were recorded in Dipsas catesbyi, D. neivai, Imantodes cenchoa, Leptodeira annulata, and Ninia maculata from areas with seasonal and aseasonal climates. Testicular cycles also varied from seasonal (in H. torquiata) to continuous (in Dipsa,5 spp., Leptodeira annulata, L. maculata, N. maculata, and Sibynomorphus spp.). Most dipsadines are small (less than 500 rum SVL), and females attain sexual maturity with similar relative body size than males. Sexual dimorphism occurred in terms of SVL and tail length in most species, and clutch size tended to be small (less than five eggs). Combat behavior occurs in Imantodes cenchoa, which did not show sexual size dimorphism. Reproductive timing, for both females and males, varied among species but in general there were no differences between the tribes of Dipsadinae in most of the reproductive characteristics, such as mean body size, relative size at sexual maturity, sexual size and tail dimorphism, duration of vitellogenesis or egg-carrying in oviducts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Limited financial sources and the difficulty in performing complete surveys, allied to the speed of habitat fragmentation and the urgent necessity in select conservation areas, create the necessity of using some methodologies which bypass these problems. One possibility is the use of surrogate taxa that might be used as indicator of others groups richness and even total richness of an area. We investigated if the use of surrogate taxon is useful among seven mammal orders in Amazon. We tested through Pearson`s correlation (Bonferroni`s adjusted) if (1) there was a correlation between richness of total species and some order; (2) there was a significant pair wise correlation between species richness of each order; and (3) the combination of two orders would give better results as a surrogate for the total richness. The correlations found, in general, were positive. It means that the increase in the richness of an order was followed by its increase in another order, as well as in the total species richness. Only Didelphimorphia was significantly correlated with the total species richness. In the pair wise analyses only one assembly, Primates and Artiodactyla, was significantly correlated with total richness. Since indicator species are more effective within taxonomic groups (life-history characteristics are likely to be more different among than within major taxonomic groups), we suggest that an indicator group might be chosen for each one. In this case, for mammals from Amazon, it would be Didelphimorphia. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sexual system of the symbiotic shrimp Thor amboinensis is described, along with observations on sex ratio and host-use pattern of different populations. We used a comprehensive approach to elucidate the previously unknown sexual system of this shrimp. Dissections, scanning electron microscopy, size-frequency distribution analysis, and laboratory observations demonstrated that T amboinensis is a protandric hermaphrodite: shrimp first mature as males and change into females later in life. Thor amboinensis inhabited the large and structurally heterogeneous sea anemone Stichoclactyla helianthus in large groups (up to 11 individuals) more frequently than expected by chance alone. Groups exhibited no particularly complex social structure and showed male-biased sex ratios more frequently than expected by chance alone. The adult sex ratio was male-biased in the four separate populations studied, one of them being thousands of kilometers apart from the others. This study supports predictions central to theories of resource monopolization and sex allocation. Dissections demonstrated that unusually large males were parasitized by an undescribed species of isopod (family Entoniscidae). Infestation rates were similarly low in both sexes (approximate to 11%-12%). The available information suggests that T. amboinensis uses pure search promiscuity as a mating system. This hypothesis needs to be formally tested with mating behavior observations and field measurements on the movement pattern of both sexes of the species. Further detailed studies on the lifestyle and sexual system of all the species within this genus and the development of a molecular phylogeny are necessary to elucidate the evolutionary history of gender expression in the genus Thor.