917 resultados para liability dollarization
Resumo:
Mode of access: Internet.
Resumo:
Item 1005-C
Resumo:
Mode of access: Internet.
Resumo:
"October 22, and 23, 1985"--Pt. 1. -- May 13, 1986--pt. 2.
Resumo:
"February 23, 1983"--Pt. 1.
Resumo:
"November 17, 1992-Bennington, VT"--Pt. 2.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"April 27, and May 4, 9, and 11, 1995"--Pt. 2.
Resumo:
Report year ends June 30, 1919/20-1937/38.
Resumo:
"An edited version of the report Professional liability and responsibility, prepared in collaboration with the Subcommittee on Professional Liability and Responsibility of American Institute of Architects-Engineers Joint Council Liaison Committee."
Resumo:
List of members for the years 1914-20 are included in v. 1-7, after which they are continued in the Year book of the society, begun in 1922.
Resumo:
Issued with supplement: Primary source pamphlet, which is updated periodically.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
We have rated eye color on a 3-point scale (1=blue/grey, 2=hazel/green, 3=brown) in 502 twin families and carried out a 5-10 cM genome scan (400-757 markers). We analyzed eye color as a threshold trait and performed multipoint sib pair linkage analysis using variance components analysis in Mx. A lod of 19.2 was found at the marker D15S1002, less than 1 cM from OCA2, which has been previously implicated in eye color variation. We estimate that 74% of variance in eye color liability is due to this QTL and a further 18% due to polygenic effects. However, a large shoulder on this peak suggests that other loci affecting eye color may be telomeric of OCA2 and inflating the QTL estimate. No other peaks reached genome-wide significance, although lods >2 were seen on 5p and 14q and lods >1 were additionally seen on chromosomes 2, 3, 6, 7, 8, 9, 17 and 18. Most of these secondary peaks were reduced or eliminated when we repeated the scan as a two locus analysis with the 15q linkage included, although this does not necessarily exclude them as false positives. We also estimated the interaction between the 15q QTL and the other marker locus but there was only minor evidence for additive x additive epistasis. Elaborating the analysis to the full two-locus model including non-additive main effects and interactions did not strengthen the evidence for epistasis. We conclude that most variation in eye color in Europeans is due to polymorphism in OCA2 but that there may be modifiers at several other loci.