994 resultados para laboratory rats


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sonoluminescence (SL) involves the conversion of mechanical [ultra]sound energy into light. Whilst the phenomenon is invariably inefficient, typically converting just 10-4 of the incident acoustic energy into photons, it is nonetheless extraordinary, as the resultant energy density of the emergent photons exceeds that of the ultrasonic driving field by a factor of some 10 12. Sonoluminescence has specific [as yet untapped] advantages in that it can be effected at remote locations in an essentially wireless format. The only [usual] requirement is energy transduction via the violent oscillation of microscopic bubbles within the propagating medium. The dependence of sonoluminescent output on the generating sound field's parameters, such as pulse duration, duty cycle, and position within the field, have been observed and measured previously, and several relevant aspects are discussed presently. We also extrapolate the logic from a recently published analysis relating to the ensuing dynamics of bubble 'clouds' that have been stimulated by ultrasound. Here, the intention was to develop a relevant [yet computationally simplistic] model that captured the essential physical qualities expected from real sonoluminescent microbubble clouds. We focused on the inferred temporal characteristics of SL light output from a population of such bubbles, subjected to intermediate [0.5-2MPa] ultrasonic pressures. Finally, whilst direct applications for sonoluminescent light output are thought unlikely in the main, we proceed to frame the state-of-the- art against several presently existing technologies that could form adjunct approaches with distinct potential for enhancing present sonoluminescent light output that may prove useful in real world [biomedical] applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas9. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion. Here we investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microneedle (MN) arrays could offer an alternative method to traditional drug delivery and blood sampling methods. However, acceptance among key end-users is critical for new technologies to succeed. MNs have been advocated for use in children and so, paediatricians are key potential end-users. However, the opinions of paediatricians on MN use have been previously unexplored. The aim of this study was to investigate the views of UK paediatricians on the use of MN technology within neonatal and paediatric care. An online survey was developed and distributed among UK paediatricians to gain their opinions of MN technology and its use in the neonatal and paediatric care settings, particularly for MN-mediated monitoring. A total of 145 responses were obtained, with a completion response rate of 13.7 %. Respondents believed an alternative monitoring technique to blood sampling in children was required. Furthermore, 83 % of paediatricians believed there was a particular need in premature neonates. Overall, this potential end-user group approved of the MN technology and a MN-mediated monitoring approach. Minimal pain and the perceived ease of use were important elements in gaining favour. Concerns included the need for confirmation of correct application and the potential for skin irritation. The findings of this study provide an initial indication of MN acceptability among a key potential end-user group. Furthermore, the concerns identified present a challenge to those working within the MN field to provide solutions to further improve this technology. The work strengthens the rationale behind MN technology and facilitates the translation of MN technology from lab bench into the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions.

Basic Procedures: Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain.

Main Findings: A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction.

Principal Conclusions: According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). Kaempferol is a flavonoid that functions as a non-steroidal selective progesterone receptor modulator (SPRM) in vitro. This study investigated the molecular and physiological effects of kaempferol in the ovariectomized rat uteri.

METHODS: Since genistein is a phytoestrogen that was previously demonstrated to increase uterine weight and proliferation, the ability of kaempferol to block genistein action in the uterus was investigated. Analyses of proliferation, steroid receptor expression, and induction of well-established PR-regulated targets Areg and Hand2 were completed using histological analysis and qPCR gene induction experiments. In addition, kaempferol in silico binding analysis was completed for PR. The activation of estrogen and androgen receptor signalling was determined in vitro.

RESULTS: Molecular docking analysis confirmed that kaempferol adopts poses that are consistent with occupying the ligand-binding pocket of PRA. Kaempferol induced expression of PR regulated transcriptional targets in the ovariectomized rat uteri, including Hand2 and Areg. Consistent with progesterone-l ke activity, kaempferol attenuated genistein-induced uterine luminal epithelial proliferation without increasing uterine weight. Kaempferol signalled without down regulating PR expression in vitro and in vivo and without activating estrogen and androgen receptors.

CONCLUSION: Taken together, these data suggest that kaempferol is a unique natural PR modulator that activates PR signaling in vitro and in vivo without triggering PR degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory salt decay simulations are a well established method to assess the relative durability of stone. There is still, however, very much scope to implement improved monitoring techniques to investigate the changes experienced by the materials during these experiments. Non-destructive techniques have acquired over recent decades a preferential status for monitoring change samples during salt decay tests, as they allow cumulative tests on each sample. The development of HD laser scanning permits detailed mapping of surface changes and, therefore, constitutes an effective technique to monitor non-destructively surface changes in tested samples as an alternative to other monitoring techniques such as traditional weight loss strategies that do not permit any degree of spatial differentiation that can be related, for example, to underlying stone properties.