952 resultados para kink solutions in finite volume


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) are completely miscible below 50 wt % PVDF in the blends. In this work, an attempt was made to understand the fragility/cooperativity relation in glass-forming and crystalline blends of PVDF/PMMA and in the presence of a heteronucleating agent, multiwall carbon nanotubes (CNTs). Hence, three representative blends were chosen: a completely amorphous (10/90 by wt, PVDF/PMMA), on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA), and crystalline (60/40 by wt, PVDF/PMMA) blends. The intermolecular cooperativity/coupling, fragility, and configurational entropy near the glass transition temperature (T-g) were studied using differential scanning calorimetry (DSC) and broadband dielectric relaxation spectroscopy (DRS). It was observed that the blends with higher concentration of PMMA were more fragile (fragility index m = 141) and those with higher concentration of PVDF were more strong (m = 78). Interestingly, the coupling was less in the glass-forming blends (10/90 by wt, PVDF/PMMA) than the crystalline blends as manifested from DRS. This observation was also supported by DSC measurements which reflected that the cooperative rearranging region (CRR) existed over a smaller length scales in fragile blends as compared to strong blends, possibly due to restricted amorphous mobility. This effect was more prominent in the presence of CNTs, in particular for 50/50 (by wt) and 60/40 (by wt) PVDF/PMMA blends. Further, the configurational entropy, as manifested from DRS, decreased significantly in the strong blends in striking contrast to the fragile blends, supported by DSC, which manifested in an increase in the volume of cooperativity in the strong blends. The higher coupling in the crystalline blends can be attributed to good packing of the amorphous regions. While this is understood for crystalline blends (60/40 by wt, PVDF/PMMA), it is envisaged that enhanced dynamic heterogeneity is accountable for increased coupling in the case of blends which are on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA). The latter is also supported by broad relaxations near the T-g in DRS. Interestingly, the intermolecular coupling in the blends in the presence of CNTs has reduced, though the potential energy barrier hindering the rearrangement of CRR is lower than the blends without CNTs. In addition, the amorphous packing is not as effective as the blends without CNTs. This is manifested from reduced volume of cooperativity in particular, for 50/50 (by wt) and 60/40 (by wt) blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present the solutions of 1-D and 2-D non-linear partial differential equations with initial conditions. We approach the solutions in time domain using two methods. We first solve the equations using Fourier spectral approximation in the spatial domain and secondly we compare the results with the approximation in the spatial domain using orthogonal functions such as Legendre or Chebyshev polynomials as their basis functions. The advantages and the applicability of the two different methods for different types of problems are brought out by considering 1-D and 2-D nonlinear partial differential equations namely the Korteweg-de-Vries and nonlinear Schrodinger equation with different potential function. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of Pt layer thickness on the fracture behavior of PtNiAl bond coats was studied in situ using clamped micro-beam bend tests inside a scanning electron microscope (SEM). Clamped beam bending is a fairly well established micro-scale fracture test geometry that has been previously used in determination of fracture toughness of Si and PtNiAl bond coats. The increasing amount of Pt in the bond coat matrix was accompanied by several other microstructural changes such as an increase in the volume fraction of alpha-Cr precipitate particles in the coating as well as a marginal decrease in the grain size of the matrix. In addition, Pt alters the defect chemistry of the B2-NiAl structure, directly affecting its elastic properties. A strong correlation was found between the fracture toughness and the initial Pt layer thickness associated with the bond coat. As the Pt layer thickness was increased from 0 to 5 mu m, resulting in increasing Pt concentration from 0 to 14.2 at.% in the B2-NiAl matrix and changing alpha-Cr precipitate fraction, the initiation fracture toughness (K-IC) was seen to rise from 6.4 to 8.5 MPa.m(1/2). R-curve behavior was observed in these coatings, with K-IC doubling for a crack propagation length of 2.5 mu m. The reasons for the toughening are analyzed to be a combination of material's microstructure (crack kinking and bridging due to the precipitates) as well as size effects, as the crack approaches closer to the free surface in a micro-scale sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk single crystals of GaN and AlN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or nitride is used to attack a bulk nitride feedstock at temperatures from 200°C to 500°C and pressures from 1 to 4 kbar. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the fluid flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of particle size on flow pattern and temperature distribution in an autoclave are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a novel moving mesh method suitable for solving axisymmetric free-boundary problems, including the Marangoni effect induced by surfactant or temperature variation. This method employs a body-fitted grid system where the gas-liquid interface is one line of the grid system. We model the surfactant equation of state with a non-linear Langmuir law, and, for simplicity, we limit ourselves to the situation of an insoluble surfactant. We solve complicated dynamic boundary conditions accurately on the gas-liquid interface in the framework of finite-volume methods. Our method is used to study the effect of a surfactant on the skin friction of a bubble in a uniaxial flow. For the limiting case where the surface diffusivity is zero, the effect of a tangential stress generated by the surface tension gradient, allows us to explain a new phenomenon in high concentration regimes: larger surface tension, but also larger deformation. Furthermore, this condition leads to the formation of boundary layers and flow separation at high Reynolds numbers. The influence of these complex flow patterns is examined. © 2005 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cylindrical cellular detonation is numerically investigated by solving two-dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an unstructured Chimera mesh method is used to compute incompressible flow around a rotating body. To implement the pressure correction algorithm on unstructured overlapping sub-grids, a novel interpolation scheme for pressure correction is proposed. This indirect interpolation scheme can ensure a tight coupling of pressure between sub-domains. A moving-mesh finite volume approach is used to treat the rotating sub-domain and the governing equations are formulated in an inertial reference frame. Since the mesh that surrounds the rotating body undergoes only solid body rotation and the background mesh remains stationary, no mesh deformation is encountered in the computation. As a benefit from the utilization of an inertial frame, tensorial transformation for velocity is not needed. Three numerical simulations are successfully performed. They include flow over a fixed circular cylinder, flow over a rotating circular cylinder and flow over a rotating elliptic cylinder. These numerical examples demonstrate the capability of the current scheme in handling moving boundaries. The numerical results are in good agreement with experimental and computational data in literature. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The systems with some system parameters perturbed are investigated. These systems might exist in nature or be obtained by perturbation or truncation theory. Chaos might be suppressed or induced. Some of these dynamical systems exhibit extraordinary long transients, which makes the temporal structure seem sensitively dependent on initial conditions in finite observation time interval.