957 resultados para infrared radiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low wave number range of decaying turbulence governed by the Charney-Hasegawa-Mima (CHM) equation is examined theoretically and by direct numerical simulation. Here, the low wave number range is defined as values of the wave number k below the wave number kE corresponding to the peak of the energy spectrum, or alternatively the centroid wave number of the energy spectrum. The energy spectrum in the low wave number range in the infrared regime (k →0) is theoretically derived to be E(k) ∼k5, using a quasinormal Markovianized model of the CHM equation. This result is verified by direct numerical simulation of the CHM equation. The wave number triads (k,p,q) responsible for the formation of the low wave number spectrum are also examined. It is found that the energy flux Π(k) for k< kE can be entirely expressed by Π(-)(k), which is the total net input of energy to wave numbers k. Furthermore, the contribution of nonlocal triad interactions to the energy flux is found to be predominant in the range log (k/kE)<-0.5, where the nonlocal interactions are defined to be those triad interactions for which the ratio of the largest leg of the triad to the smallest leg is larger than four. ©2001 The Physical Society of Japan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared polarization and intensity imagery provide complementary and discriminative information in image understanding and interpretation. In this paper, a novel fusion method is proposed by effectively merging the information with various combination rules. It makes use of both low-frequency and highfrequency images components from support value transform (SVT), and applies fuzzy logic in the combination process. Images (both infrared polarization and intensity images) to be fused are firstly decomposed into low-frequency component images and support value image sequences by the SVT. Then the low-frequency component images are combined using a fuzzy combination rule blending three sub-combination methods of (1) region feature maximum, (2) region feature weighting average, and (3) pixel value maximum; and the support value image sequences are merged using a fuzzy combination rule fusing two sub-combination methods of (1) pixel energy maximum and (2) region feature weighting. With the variables of two newly defined features, i.e. the low-frequency difference feature for low-frequency component images and the support-value difference feature for support value image sequences, trapezoidal membership functions are proposed and developed in tuning the fuzzy fusion process. Finally the fused image is obtained by inverse SVT operations. Experimental results of visual inspection and quantitative evaluation both indicate the superiority of the proposed method to its counterparts in image fusion of infrared polarization and intensity images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of six scanning cloud radar scan strategies to reconstruct cumulus cloud fields for radiation study is assessed. Utilizing snapshots of clean and polluted cloud fields from large eddy simulations, an analysis is undertaken of error in both the liquid water path and monochromatic downwelling surface irradiance at 870 nm of the reconstructed cloud fields. Error introduced by radar sensitivity, choice of radar scan strategy, retrieval of liquid water content (LWC), and reconstruction scheme is explored. Given an in␣nitely sensitive radar and perfect LWC retrieval, domain average surface irradiance biases are typically less than 3 W m␣2 ␣m␣1, corresponding to 5–10% of the cloud radiative effect (CRE). However, when using a realistic radar sensitivity of ␣37.5 dBZ at 1 km, optically thin areas and edges of clouds are dif␣cult to detect due to their low radar re-ectivity; in clean conditions, overestimates are of order 10 W m␣2 ␣m␣1 (~20% of the CRE), but in polluted conditions, where the droplets are smaller, this increases to 10–26 W m␣2 ␣m␣1 (~40–100% of the CRE). Drizzle drops are also problematic; if treated as cloud droplets, reconstructions are poor, leading to large underestimates of 20–46 W m␣2 ␣m␣1 in domain average surface irradiance (~40–80% of the CRE). Nevertheless, a synergistic retrieval approach combining the detailed cloud structure obtained from scanning radar with the droplet-size information and location of cloud base gained from other instruments would potentially make accurate solar radiative transfer calculations in broken cloud possible for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that retrievals of sea surface temperature from satellite infrared imagery are prone to two forms of systematic error: prior error (familiar from the theory of atmospheric sounding) and error arising from nonlinearity. These errors have different complex geographical variations, related to the differing geographical distributions of the main geophysical variables that determine clear-sky brightness-temperatures over the oceans. We show that such errors arise as an intrinsic consequence of the form of the retrieval (rather than as a consequence of sub-optimally specified retrieval coefficients, as is often assumed) and that the pattern of observed errors can be simulated in detail using radiative-transfer modelling. The prior error has the linear form familiar from atmospheric sounding. A quadratic equation for nonlinearity error is derived, and it is verified that the nonlinearity error exhibits predominantly quadratic behaviour in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bleaching spectra of the ‘fast’ and ‘medium’ optically stimulated luminescence (OSL) components of quartz are reported. A dependence of photoionization cross-section, σ, on wavelength was observed for the fast and medium components and a significant difference in their responses to stimulation wavelength was found. The ratio of the fast and medium photoionization cross-sections, σfast/σmedium, varied from 30.6 when stimulated with View the MathML source light to 1.4 at View the MathML source. At View the MathML source the fast and medium photoionization cross-sections were found to be sufficiently different that infrared bleaching at raised temperatures allowed the selective removal of the fast component with negligible depletion of the medium. A method for optically separating the OSL components of quartz is suggested, based on the wavelength dependence of photoionization cross-sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared observations of the outbursting black hole XTE J1118+480 (ATEL #383) were performed using SQIID on the Kitt Peak National Observatory 2.1m telescope. Observations spanning 2005 January 15.42-15.58 found it somewhat fainter than the previous outburst (IAUC # 7394 , # 7407 ), at average brightness J=12.91+/-0.03, H=12.50+/-0.03, K=11.95+/-0.03. The colors again correspond to an approximately flat spectrum in F_nu. No orbital variation is apparent, but there is substantial unresolved rapid variability with rms amplitude 22% in K (between 2s exposures). Further observations are planned nightly until Jan 21.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In June 2009 the Sarychev volcano located in the Kuril Islands to the northeast of Japan erupted explosively, injecting ash and an estimated 1.2 ± 0.2 Tg of sulfur dioxide into the upper troposphere and lower stratosphere, making it arguably one of the 10 largest stratospheric injections in the last 50 years. During the period immediately after the eruption, we show that the sulfur dioxide (SO2) cloud was clearly detected by retrievals developed for the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument and that the resultant stratospheric sulfate aerosol was detected by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and CALIPSO lidar. Additional surface‐based instrumentation allows assessment of the impact of the eruption on the stratospheric aerosol optical depth. We use a nudged version of the HadGEM2 climate model to investigate how well this state‐of‐the‐science climate model can replicate the distributions of SO2 and sulfate aerosol. The model simulations and OSIRIS measurements suggest that in the Northern Hemisphere the stratospheric aerosol optical depth was enhanced by around a factor of 3 (0.01 at 550 nm), with resultant impacts upon the radiation budget. The simulations indicate that, in the Northern Hemisphere for July 2009, the magnitude of the mean radiative impact from the volcanic aerosols is more than 60% of the direct radiative forcing of all anthropogenic aerosols put together. While the cooling induced by the eruption will likely not be detectable in the observational record, the combination of modeling and measurements would provide an ideal framework for simulating future larger volcanic eruptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period when

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initial results are presented from a middle atmosphere extension to a version of the European Centre For Medium Range Weather Forecasting tropospheric model. The extended version of the model has been developed as part of the UK Universities Global Atmospheric Modelling Project and extends from the ground to approximately 90 km. A comprehensive solar radiation scheme is included which uses monthly averaged climatological ozone values. A linearised infrared cooling scheme is employed. The basic climatology of the model is described; the parametrization of drag due to orographically forced gravity waves is shown to have a dramatic effect on the simulations of the winter hemisphere.