962 resultados para immunoglobulin a antibody
Resumo:
Eukaryotes have evolved quality control mechanisms that prevent the expression of genes in which the protein coding potential is crippled by the presence of a premature translation-termination codon (PTC). In addition to nonsense-mediated mRNA decay (NMD), a well documented posttranscriptional consequence of the presence of a PTC in an mRNA, we recently reported the transcriptional silencing of PTC-containing immunoglobulin (Ig) mu and gamma minigenes when they are stably integrated into the genome of HeLa cells. Here we demonstrate that this transcriptional silencing of PTC-containing Ig-mu constructs requires active translation of the cognate mRNA, as it is not observed under conditions where translation of the PTC-containing mRNA is inhibited through an iron-responsive element in the 5'-untranslated region. Furthermore, RNA interference-mediated depletion of the essential NMD factor Upf1 not only abolishes NMD but also reduces the extent of nonsense-mediated transcriptional gene silencing (NMTGS). Collectively, our data indicate that NMTGS and NMD are linked, relying on the same mechanism for PTC recognition, and that the NMTGS pathway branches from the NMD pathway at a step after Upf1 function.
Resumo:
An estimated 2%-3% of the world's population is chronically infected with hepatitis C virus (HCV) and this is a major cause of liver disease worldwide. Following acute infection, outcome is variable with acute HCV successfully resolved in some individuals (20%-30%), but in the majority of cases the virus is able to persist. Co-infection with human immunodeficiency virus has been associated with a negative impact on the course of HCV infection. The host's immune response is an important correlate of HCV infection outcome and disease progression. Natural killer (NK) cells provide a major component of the antiviral immune response by recognising and killing virally infected cells. NK cells modulate their activity through a combination of inhibitory and activatory receptors such as the killer immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen (HLA) Class I molecules. In this workshop component, we addressed the influence of KIR genotypes and their HLA ligands on resolving HCV infection and we discuss the implications of the results of the study of Lopez-Vazquez et al. on KIR and HCV disease progression.
Resumo:
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically naïve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.
Resumo:
Natural antibodies (NA) specific for infectious pathogens are found at low titer (usually <1:40) in the serum of healthy, non-immunized, individuals. Therefore, NA are part of the first line of defence against blood borne microorganisms. They directly neutralize viral infections or lyse pathogens by activating the complement cascade. In addition, recent studies highlighted their role in the pooling of infectious pathogens and other antigens to the spleen. This prevents infection of vital target organs and enhances the induction of adaptive immune responses. Specific T and B-cell responses are exclusively induced in highly organized secondary lymphoid organs including lymph nodes and the spleen. As a consequence, mice with disrupted microorganisation of lymphoid organs have defective adaptive immunity. In addition, some pathogens including lymphocytic choriomeningitis virus (LCMV), Leishmania and HIV developed strategies to destroy the splenic architecture in order to induce an acquired immunosuppression and to establish persistent infection. NA antibodies enhance early neutralizing antibodies in the absence of T help mainly by targeting antigen to the splenic marginal zone. In addition, by activating the complement cascade, NA enhance T cell and T-cell dependent B-cell responses. Therefore, natural antibodies are an important link between innate and adaptive immunity.
Resumo:
BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.
Resumo:
BACKGROUND: beta(3)-Integrins are involved in platelet aggregation via alpha(IIb)beta(3) [glycoprotein (GP)IIb-GPIIIa], and in angiogenesis via endothelial alpha(V)beta(3). Cross-reactive ligands with antiaggregatory and proangiogenic effects, both desirable in peripheral vasculopathies, have not yet been described. OBJECTIVES: In vitro and in vivo characterization of antiaggregatory and proangiogenic effects of two recombinant human Fab fragments, with emphasis on beta(3)-integrins. METHODS: Recombinant Fab fragments were obtained by phage display technology. Specificity, affinity and IC(50) were determined by immunodot assays, enzyme-linked immunosorbent assay (ELISA), and Scatchard plot analysis, and by means of human umbilical vein endothelial cells (HUVECs). Functional analyses included ELISA for interaction with fibrinogen binding to GPIIb-GPIIIa, flow cytometry for measurement of activation parameters and competitive inhibition experiments, human platelet aggregometry, and proliferation, tube formation and the chorioallantoic membrane (CAM) assay for measurement of angiogenic effects. RESULTS: We observed specific and high-affinity binding to an intact GPIIb-GPIIIa receptor complex of two human Fab autoantibody fragments, with no platelet activation. Dose-dependent fibrinogen binding to GPIIb-GPIIIa and platelet aggregation were completely inhibited. One Fab fragment was competitively inhibited by abciximab and its murine analog monoclonal antibody (mAb) 7E3, whereas the other Fab fragment bound to cultured HUVECs, suggesting cross-reactivity with alpha(V)beta(3), and also demonstrated proangiogenic effects in tube formation and CAM assays. CONCLUSIONS: These Fab fragments are the first entirely human anti-GPIIb-GPIIIa Fab fragments with full antiaggregatory properties; furthermore, they do not activate platelets. The unique dual-specificity anti-beta(3)-integrin Fab fragment may represent a new tool for the study and management of peripheral arterial vasculopathies.
Resumo:
BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.
Resumo:
Sialic-acid-binding immunoglobulin-like lectin (Siglec) 9 mediates death signals in neutrophils. The objective of this study was to determine the heterogeneity of neutrophil death responses in septic shock patients and to analyze whether these ex vivo data are related to the severity and outcome of septic shock. In this prospective cohort study, blood samples of patients with septic shock (n = 26) in a medical-surgical intensive care unit (ICU) were taken within 24 h of starting the treatment of septic shock (phase A), after circulatory stabilization (phase B), and 10 days after admission or at ICU discharge if earlier (phase C). Neutrophil death was quantified in the presence and absence of an agonistic anti-Siglec-9 antibody after 24 h ex vivo. In phase A, two distinct patterns of Siglec-9-mediated neutrophil death were observed: resistance to neutrophil death (n = 14; Siglec-9 nonresponders) and increased neutrophil death (n = 12; Siglec-9 responders) after Siglec-9 ligation compared with neutrophils from normal donors. Experiments using a pharmacological pan-caspase-inhibitor provided evidence for caspase-independent neutrophil death in Siglec-9 responders upon Siglec-9 ligation. There were no differences between Siglec-9 responders and nonresponders in length of ICU or hospital stay of survivors or severity of organ dysfunction. Taken together, septic shock patients exhibit different ex vivo death responses of blood neutrophils after Siglec-9 ligation early in shock. Both the resistance and the increased susceptibility to Siglec-9-mediated neutrophil death tend to normalize within 72 h after shock. Further studies are required to understand the role of Siglec-9-mediated neutrophil death in septic shock.
Variability of anti-PF4/heparin antibody results obtained by the rapid testing system ID-H/PF4-PaGIA
Resumo:
BACKGROUND: Recent studies have shown that a low clinical pretest probability may be adequate for excluding heparin-induced thrombocytopenia. However, for patients with intermediate or high pretest probability, laboratory testing is essential for confirming or refuting the diagnosis. Rapid assessment of anti-PF4/heparin-antibodies may assist clinical decision-making. OBJECTIVES: To evaluate the performance of rapid ID-H/PF4-PaGIA. In particular, we verified reproducibility of results between plasma and serum specimens, between fresh and frozen samples, and between different ID-H/PF4-polymer lots (polystyrene beads coated with heparin/PF4-complexes). PATIENTS/METHODS: The samples studied were 1376 plasma and 914 corresponding serum samples from patients investigated for suspected heparin-induced thrombocytopenia between January 2000 and October 2008. Anti-PF4/heparin-antibodies were assessed by ID-H/PF4-PaGIA, commercially available ELISAs and heparin-induced platelet aggregation test. RESULTS: Among 914 paired plasma/serum samples we noted discordant results (negative vs. low-titre positive) in nine instances (1%; 95%CI, 0.4-1.6%). Overall, agreement between titres assessed in plasma vs. serum was highly significant (Spearman correlation coefficient, 0.975; P < 0.0001). Forty-seven samples tested both fresh and after freezing/thawing showed a good agreement, with one discordant positive/negative result (Spearman correlation coefficient, 0.970; P < 0.0001). Among 1376 plasma samples we noted a strikingly variable incidence of false negative results (none - 82%; 95%CI, 66-98%), depending on the employed ID-H/PF4-polymer lot. Faulty lots can be recognized by titrating commercial positive controls and stored samples of HIT-patients. CONCLUSION: Laboratories performing the assay should implement stringent internal quality controls in order to recognize potentially faulty ID-H/PF4-polymer lots, thus avoiding false negative results.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.