929 resultados para immune suppressor
Resumo:
Proteases of Staphylococcus aureus have long been considered to function as important virulence factors, although direct evidence of the role of particular enzymes remains incomplete and elusive. Here, we sought to provide a collective view of the prevalence of extracellular protease genes in genomes of commensal and pathogenic strains of S. aureus and their expression in the course of human and mouse infection. Data on V8 protease, staphopains A and B, aureolysin, and the recently described and poorly characterized group of six Spl proteases are provided. A phylogenetically diverse collection of 167 clinical isolates was analyzed, resulting in the comprehensive genetic survey of the prevalence of protease-encoding genes. No correlation between identified gene patterns with specific infections was established. Humoral response against the proteases of interest was examined in the sera derived from human patients and from a model mouse infection. The analysis suggests that at least some, if not all, tested proteases are expressed and secreted during the course of infection. Overall, the results presented in this study support the hypothesis that the secretory proteases as a group may contribute to the virulence of S. aureus.
Resumo:
The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the beta-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.
Resumo:
Endocrine disruption, in particular disruption by estrogen-active compounds, has been identified as an important ecotoxicological hazard in the aquatic environment. Research on the impact of endocrine disrupting compounds (EDCs) on wildlife has focused on disturbances of the reproductive system. However, there is increasing evidence that EDCs affect a variety of physiological systems other than the reproductive system. Here, we discuss if EDCs may be able to affect the immune system of fish, as this would have direct implications for individual fitness and population growth. Evidence suggesting an immunomodulatory role of estrogens in fish comes from the following findings: (a) estrogen receptors are expressed in piscine immune organs, (b) immune gene expression is modulated by estrogen exposure, and (c) pathogen susceptibility of fish increases under estrogen exposure.
Resumo:
Different pathogens, such as Escherichia coli and Staphylococcus aureus, can be responsible for different outcomes of mastitis; that is, acute and severe or chronic and subclinical. These differences in the disease could be related to different mammary responses to the pathogens. The objective of this study was to determine if intramammary challenge with the endotoxins lipopolysaccharide (LPS), from E. coli, and lipoteichoic acid (LTA), from Staph. aureus, induce different immune responses in vivo in milk cells and mammary tissue. To provide a reference level for comparing the challenge and to show the different stimulation of the mammary immune system on a quantitatively similar level, dosages of LPS and LTA were chosen that induced an increase of somatic cells in milk to similar maxima. One udder quarter in each of 21 lactating dairy cows was challenged with 0.2 mug of LPS or 20 mug of LTA. From these quarters and from respective control quarters, milk cells or tissue biopsies were obtained at 0, 6, and 12h relative to the challenge to measure mRNA expression of tumor necrosis factor-alpha (TNFalpha), IL-1beta, IL-8, lactoferrin, and RANTES (regulated upon activation, normal T-cell expressed and secreted). Furthermore, if no biopsies were performed, hourly milk samples were taken for measurement of somatic cell count, lactate dehydrogenase (LDH), and TNFalpha. Somatic cell count increased in all treatments to similar maxima with LPS and LTA treatments. Concentrations of TNFalpha in milk increased with LPS but not with LTA. The activity of LDH in milk increased in both treatments and was more pronounced with LPS than with LTA. The mRNA expression of TNFalpha, IL-1beta, IL-8, and RANTES showed increases in milk cells, and LPS was a stronger inducer than LTA. Lactoferrin mRNA expression decreased in milk cells with LPS and LTA treatments. The measured factors did not change in either treatment in mammary tissue. Challenge of udder quarters with dosages of LPS and LTA that induce similar increases in SCC stimulate the appearance of different immune factor patterns. This dissimilar response to LPS and LTA may partly explain the different course and intensity of mastitis after infection with E. coli and Staph. aureus, respectively.
Resumo:
INTRODUCTION: Acute fibrinous and organizing pneumonia (AFOP) is a recently described histologic pattern of diffuse pulmonary disease. In children, all cases reported to date have been fatal. In this study, we describe the first nonfatal AFOP in a child and review the literature. DESCRIPTION: A 10-year-old boy developed very severe aplastic anemia (VSAA) after being admitted to our hospital with a fulminant hepatic failure of unknown origin. A chest computed tomography scan revealed multiple lung nodules and a biopsy of a pulmonary lesion showed all the signs of AFOP. Infectious workup remained negative. We started immunosuppressive therapy with antithymocyte globulin and cyclosporine to treat VSAA. Subsequent chest computed tomography scans showed a considerable diminution of the lung lesions but the VSAA did not improve until we performed hematopoietic stem cell transplantation 5 months later. CONCLUSIONS: Aplastic anemia is associated with a variety of autoimmune syndromes. The sequence of events in our patient suggests that the hepatic failure, AFOP, and the VSAA may all have been part of an autoimmune syndrome. AFOP could be the result of immune dysregulation in this pediatric case with favorable outcome after immunosuppressive therapy and hematopoietic stem cell transplantation.
Resumo:
To investigate the suitability of blood granulocyte and monocyte sensitivity, as measured by the quantity of different agonists required to induce CD62L shedding, for assessment of perioperative immune changes in patients undergoing cardiac surgery with cardiopulmonary bypass.
Resumo:
Vaccination with Echinococcus multilocularis 14-3-3 protein can protect mice against primary E. multilocularis infection. The present study investigated the efficacy and efficiency of the adjuvant muramyl dipeptide Gerbu, alone or together with recombinant 14-3-3 protein, to modulate the course of secondary E. multilocularis infection in C56BL/6 mice. The application of Gerbu alone already resulted in a parasite weight reduction when compared with infected control mice, while rec14-3-3 did not add to this effect. Immunological parameters were concurrently assessed with a mixed cell reaction including bone marrow-derived dendritic cells (BMDCs) together with lymph node cells from mice with or without immunisation and/or infection. While mice having received Gerbu adjuvant were found to highly proliferate in response to co-cultivation with 14-3-3-stimulated bone marrow dendritic cells, a sensitisation of BMDCs with vesicle fluid (VF) antigen lead to a striking decrease of the lymphoproliferative response in comparison to that of control mice, raising the hypothesis that immunosuppressive components may be part of this VF-antigen. Anti-14-3-3 antibody production was only found in those mice that had been previously 14-3-3-immunised, whereas all other only-infected mice failed to produce such antibodies. Conclusively, Gerbu adjuvant appears to directly generate a non-specific immune response that contributes to the control of the metacestode growth, putatively in association with a BMDC activity suppressed by components of the VF-antigen.
Resumo:
Low somatic cell count (SCC) is a reliable indicator of high-quality milk free of pathogenic microorganisms. Thus, an important goal in dairy practice is to produce milk with low SCC. Selection for cows with low SCC can sometimes lead to extremely low SCC in single quarters. The cells in milk are, however, predominantly immune cells with important immune functions. To investigate the mammary immune competence of quarters with very low SCC, healthy udder quarters of cows with normal SCC of (40-100) x 10(3) cells/ml and very low SCC of < 20 x 10(3) cells/ml were challenged with lipopolysaccharide (LPS) from Escherichia coli. In the first experiment, SCC and cell viability after a challenge with 50 ng of LPS/quarter was investigated. In the second experiment, tumour necrosis factor alpha (TNF-alpha) concentration and lactate dehydrogenase (LDH) activity in milk, and mRNA expression of various innate immune factors in milk cells were measured after a challenge with 100 mug LPS/quarter. LPS challenge induced an increase of SCC. SCC levels reached were higher in quarters with normal SCC and maximum SCC was reached 1 h earlier than in very low SCC quarters. The increase of TNF-alpha concentrations in milk in response to LPS challenge was lower in quarters with very low SCC than in quarters with normal SCC. The viability of cells and the LDH activity in milk increased in response to LPS challenge, however, without a difference between the groups. The mRNA expression of IL-1beta and IL-8 was increased in milk cells at 12 h after LPS challenge, whereas that of TNF-alpha and lactoferrin was not increased at the measured time points (12, 24 and 36 h after LPS challenge). No differences of mRNA expression of measured immune factors between normal and very low SCC samples were detected. The study showed that udder quarters with very low SCC responded with a less marked increase of SCC compared with quarters with normal SCC. This difference corresponded with simultaneously lower TNF-alpha concentrations in milk. However, the immune competence of the cells themselves based on mRNA expression of TNF-alpha, IL-8, IL-1beta, and lactoferrin, did not differ. The results may indicate that very low SCC can impair the immune competence of udder quarters, because the immune response in udder quarters with lower SCC is less efficient as fewer cells contribute to the production of immunoregulators.
Resumo:
With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.
Resumo:
To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.
Resumo:
The major route of transmission of Neospora caninum in cattle is transplacentally from an infected cow to its progeny. Therefore, a vaccine should be able to prevent both the horizontal transmission from contaminated food or water and the vertical transmission. We have previously shown that a chimeric vaccine composed of predicted immunogenic epitopes of NcMIC3, NcMIC1 and NcROP2 (recNcMIC3-1-R) significantly reduced the cerebral infection in BALB/c mice. In this study, mice were first vaccinated, then mated and pregnant mice were challenged with 2×10(6)N. caninum tachyzoites at day 7-9 of pregnancy. Partial protection was only observed in the mice vaccinated with a tachyzoite crude protein extract but no protection against vertical transmission or cerebral infection in the dams was observed in the group vaccinated with recNcMIC3-1-R. Serological and cytokine analysis showed an overall lower cytokine level in sera associated with a dominant IL-4 expression and high IgG1 titers. Thus, the Th2-type immune response observed in the pregnant mice was not protective against experimental neosporosis, in contrary to the mixed Th1-/Th2-type immune response observed in the non-pregnant mouse model. These results demonstrate that the immunomodulation that occurs during pregnancy was not favorable for the protection against N. caninum infection conferred by vaccination with recNcMIC3-1-R.
Resumo:
Specialized microenvironments have been known to strongly influence stem cell fate in hematopoiesis. The interplay between osteolineage cells, specifically the mature osteoblast, and the hematopoietic stem cell (HSC) niche have been of particular note. Recently, preliminary unpublished data obtained in the Scadden laboratory suggests the critical role of the osteoblast in regulating T cells. The goal of this project was to initially determine whether stimulating the osteoblast in the HSC niche leads to increased immune reconstitution after hematopoietic stem cell transplant (HSCT). These results indicated that while bone manipulation pre-transplant may have a positive effect on T and B lymphocyte cell recovery, bone manipulation post-transplant seems to have a suppressing effect. Additionally, stimulation of the osteoblast may have an inhibitory effect on the regeneration of GR1+ myeloid cells. Based on these results, we then sought to determine how osteoprotection pre-HSCT modifies the kinetics of graft-versus-host disease (GVHD) and impacts the regeneration of immune cells. The data from this phase of my experiment suggests a possible immediate benefit in stimulation of the osteoblast in response to GVHD prior to HSCT. The overall results from my thesis project demonstrate a promising relationship between pre-HSCT stimulation of the osteoblast and lymphocyte recovery post-HSCT. ¿
Resumo:
Generalized pustular psoriasis (GPP) is a severe inflammatory disease characterized by recurrent eruptions of sterile pustules on erythematous skin. Although tumor necrosis factor (TNF) antagonists may lead to a rapid resolution of GPP, the mechanism of action of these agents remains to be investigated. Here, we sought to evaluate markers of immune response in the skin of a patient who experienced a rapid amelioration of GPP after treatment with infliximab and acitretin.
Resumo:
The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.