926 resultados para immune responses


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic polymorphisms near IL28B are associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV), two processes that require the appropriate activation of the host immune responses. Intrahepatic inflammation is believed to mirror such activation, but its relationship with IL28B polymorphisms has yet to be fully appreciated. We analyzed the association of IL28B polymorphisms with histological and follow-up features in 2335 chronically HCV-infected Caucasian patients. Assessable phenotypes before any antiviral treatment included necroinflammatory activity (n = 1,098), fibrosis (n = 1,527), fibrosis progression rate (n = 1,312), and hepatocellular carcinoma development (n = 1,915). Associations of alleles with the phenotypes were evaluated by univariate analysis and multivariate logistic regression, accounting for all relevant covariates. The rare G allele at IL28B marker rs8099917-previously shown to be at risk of treatment failure-was associated with lower activity (P = 0.04), lower fibrosis (P = 0.02) with a trend toward lower fibrosis progression rate (P = 0.06). When stratified according to HCV genotype, most significant associations were observed in patients infected with non-1 genotypes (P = 0.003 for activity, P = 0.001 for fibrosis, and P = 0.02 for fibrosis progression rate), where the odds ratio of having necroinflammation or rapid fibrosis progression for patients with IL28B genotypes TG or GG versus TT were 0.48 (95% confidence intervals 0.30-0.78) and 0.56 (0.35-0.92), respectively. IL28B polymorphisms were not predictive of the development of hepatocellular carcinoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SerpinB1 is among the most efficient inhibitors of neutrophil serine proteases--NE, CG, and PR-3--and we investigated here its role in neutrophil development and homeostasis. We found that serpinB1 is expressed in all human bone marrow leukocytes, including stem and progenitor cells. Expression levels were highest in the neutrophil lineage and peaked at the promyelocyte stage, coincident with the production and packaging of the target proteases. Neutrophil numbers were decreased substantially in the bone marrow of serpinB1(-/-) mice. This cellular deficit was associated with an increase in serum G-CSF levels. On induction of acute pulmonary injury, neutrophils were recruited to the lungs, causing the bone marrow reserve pool to be completely exhausted in serpinB1(-/-) mice. Numbers of myeloid progenitors were normal in serpinB1(-/-) bone marrow, coincident with the absence of target protease expression at these developmental stages. Maturation arrest of serpinB1(-/-) neutrophils was excluded by the normal CFU-G growth in vitro and the normal expression in mature neutrophils of early and late differentiation markers. Normal absolute numbers of proliferating neutrophils and pulse-chase kinetic studies in vivo showed that the bone marrow deficit in serpinB1(-/-) mice was largely restricted to mature, postmitotic neutrophils. Finally, upon overnight culture, apoptosis and necrosis were greater in purified bone marrow neutrophils from serpinB1(-/-) compared with WT mice. Collectively, these findings demonstrate that serpinB1 sustains a healthy neutrophil reserve that is required in acute immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, the Centre for Immunity, Infection and Evolution sponsored a one-day symposium entitled "Wild Immunology." The CIIE is a new Wellcome Trust-funded initiative with the remit to connect evolutionary biology and ecology with research in immunology and infectious diseases in order to gain an interdisciplinary perspective on challenges to global health. The central question of the symposium was, "Why should we try to understand infection and immunity in wild systems?" Specifically, how does the immune response operate in the wild and how do multiple coinfections and commensalism affect immune responses and host health in these wild systems? The symposium brought together a broad program of speakers, ranging from laboratory immunologists to infectious disease ecologists, working on wild birds, unmanaged animals, wild and laboratory rodents, and on questions ranging from the dynamics of coinfection to how commensal bacteria affect the development of the immune system. The meeting on wild immunology, organized by Amy Pedersen, Simon Babayan, and Rick Maizels, was held at the University of Edinburgh on 30 June 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular immune responses during acute Hepatitis C virus (HCV) and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s) within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%). The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of nanogel encapsulation of recombinant NcPDI (recNcPDI) following vaccination of mice by intranasal or intraperitoneal routes and challenge infection with Neospora caninum tachyzoites were investigated. Nanogels were chitosan based, with an alginate or alginate-mannose surface. None of the mice receiving recNcPDI intraperitoneal (i.p.) (without nanogels) survived, whereas intranasal (i.n.) application protected 9 of 10 mice from disease. Association of recNcPDI with nanogels improved survival of i.p. vaccinated mice, but nanogels without recNcPDI gave similar protection levels. When nanogels were inoculated via the i.n. route, 80% of the mice were protected. Association of recNcPDI with the alginate-coated nanogels protected all mice against disease. Quantification of the cerebral parasite burden showed a significant reduction of parasite numbers in most experimental groups vaccinated i.n., except those vaccinated with alginate-mannose nanogels with or without recNcPDI. For i.p. vaccinated groups, no significant differences in cerebral infection densities were measured, but there was a reduction in the groups vaccinated with recNcPDI associated with both types of nanogels. Analysis of the immune responses of infected mice indicated that association of recNcPDI with nanogels altered the patterns of cytokine mRNA expression profiles, but had no major impact on the antibody subtype responses. Nevertheless, this did not necessarily relate to the protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-gamma mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-beta mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Listeriosis is a serious food-borne disease with increasing frequency in humans and ruminants. Despite the facts that in both hosts, listeriosis can occur as rhombencephalitis and ruminants are a reservoir of Listeria monocytogenes (LM) strains pathogenic for humans, little work has been done on the pathogenesis in ruminants. This study investigates the neuropathogenesis of listeric encephalitis in over 200 natural cases in cattle, sheep and goats by analyzing anatomical distribution, severity, bacterial load and temporal evolution of the lesions. Our results suggest that LM gains access to the brainstem of all three species via axonal migration not only along the trigeminal nerve, but also along other nerves. The ensuing encephalitis does not remain restricted to the brainstem. Rather, LM spreads further from the brainstem into rostral brain regions likely by intracerebral axonal migration. Significant differences in severity of the lesions and bacterial load were found between cattle and small ruminants, which may be caused by species-specific properties of antibacterial immune responses. As histopathological lesions of human rhombencephalitis caused by LM strongly resemble those of ruminants, the disease likely has a similar pathogenesis in both hosts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) plays a central role in immune responses to parasites and allergens. IL-4 drives the differentiation of naive T cells into Th2 cells and regulates immunoglobulin class switching to IgE.Little is known about the role of IL-4 in canine allergies and parasite infections. Most of the information derives from measurement of IL-4 mRNA expression in dog tissues, but detection of IL-4 protein has been difficult so far, probably due to low sensitivity of available methods. Antibodies (Ab) specific for canine IL-4 are available from various sources, but these Ab have been produced against recombinant Escherichia coli-expressed canine IL-4 and there is only limited information on their reactivities with native canine IL-4. Therefore, in the present study, we tested six available canine IL-4-specific Ab for their reactivities with recombinant canine IL-4 expressed in E. coli (rec.IL-4) or in mammalian cells (mam.IL-4), and with supernatants from stimulated canine peripheral blood mononuclear cells (PBMCs) using several detection methods, including Western blotting, ELISA, cytokine bead assay, and intracellular IL-4 staining. Additionally, we tested a bovine IL-4-specific antibody that has been previously shown to cross-react with canine IL-4. All tested Ab except anti-bovine IL-4 reacted with rec.IL-4, and most of them reacted with mam.IL-4. However, only the cytokine bead assay was sensitive enough to allow the detection of IL-4 in supernatants of canine PBMCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MPhi and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MPhi showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.