965 resultados para images processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2(n) energy levels of the spin-system can be treated as an n-qubit system. It is demonstrated that QIP in such systems can be carried out using transition-selective pulses, in (CHCN)-C-3, (CH3CN)-C-13, Li-7 (I = 3/2) and Cs-133 (I = 7/2), oriented in liquid crystals yielding 2 and 3 qubit systems. Creation of pseudopure states, implementation of logic gates and arithmetic operations (half-adder and subtractor) have been carried out in these systems using transition-selective pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, electroleaching and electrobioleaching of ocean manganese nodules are discussed along with the role of galvanic interactions in bioleaching. Polarization studies using a manganese nodule slurry electrode system indicated that the maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 and -1,400 mV(SCE). Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans at the above negative applied DC potentials resulted insignificant dissolution of copper, nickel and cobalt in 1 M H2SO4 and in sulfuric acid solution at pH 0.5 and 2.0. Mechanisms involved in electrobioleaching of ocean manganese nodules are discussed. Galvanic leaching of ocean manganese nodules in the presence of externally added pyrite and pyrolusite for enhancement of dissolution was also studied. Various electrochemical and biochemical parameters were optimized, and the electroleaching and galvanic processes thus developed are shown to yield almost complete dissolution of all metal values. This electrobioleaching process developed in the laboratory may be cost effective, energy efficient and environmentally friendly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well established. Implementation of conditional phase-shift gate has been a significant step, which has lead to realization of important algorithms such as Grover's search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by using coupling evolution method. We demonstrate here the implementation of the conditional phase-shift gate using transition selective pulses. As an application of the gate, we demonstrate Grover's search algorithm and quantum Fourier transform by simulations and experiments using transition selective pulses. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersion of the liquid in a porous media is of great importance in many areas of engineering and has been studied by several researchers so far. A new experimental method has been developed to measure the dispersion coefficient. X-ray absorption technique provides a better understanding of dispersion that characterizes the mixing phenomenon in the packed beds. This is because the method is non-invasive and also it gives tracer concentration data at every point within the bed. The axial dispersion in a cylindrical bed of non-porous and non-wetting spherical particles has been measured for the flow of water. Aqueous barium chloride solution has been used a as tracer. X-ray images, recorded on a videocassette, have been analyzed using an image processing software to extract the local interstitial velocity and concentration data in the bed. Local dispersion coefficient has been determined with the help of aforementioned data. By using these data, the overall dispersion coefficient in a packed bed can also be estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of powder processing and sintering temperature on densification, microstructure and mechanical properties of hydroxyapatite (HAp) ceramics was studied. The as-dried, calcined and processed HAp powders were uniaxially compacted and sintered at various temperatures (1000-1400 degreesC) for 3 h. The as-dried and processed powders, attained 97% of theoretical density (TD) at 1100 degreesC) at higher sintering temperatures, the density of the as-dried powder compact was found to decrease. A uniform microstructure with fine grain size (2.3 pm) was observed for material obtained from processed powder, whereas exaggerated grain growth with closed pores were observed in as-dried and unprocessed powder compacts. The Vickers' hardness, fracture toughness and flexural strength of HAp were determined and a maximum value of 6.3 GPa and 0.88 MPam(1/2) and 60.3 MPa, respectively were obtained for processed compact. The processing of HAp has improved its densification, microstructure homogeneity and mechanical properties. (C) 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite coatings containing quasicrystalline (QC) phases in Al-Cu-Fe alloys were prepared by laser cladding using a mixture of the elemental powders. Two substrates, namely pure aluminum and an Al-Si alloy were used. The clad layers were remelted at different scanning velocities to alter the growth conditions of different phases. The process parameters were optimized to produce quasicrystalline phases. The evolution of the microstructure in the coating layer was characterized by detailed microstructural investigation. The results indicate presence of quasicrystals in the aluminum substrate. However, only approximant phase could be observed in the substrate of Al-Si alloys. It is shown that there is a significant transport of Si atoms from the substrate to the clad layer during the cladding and remelting process. The hardness profiles of coatings on aluminum substrate indicate a very high hardness. The coating on Al-Si alloy, on the other hand, is ductile and soft. The fracture toughness of the hard coating on aluminum was obtained by nano-indentation technique. The K1C value was found to be 1.33 MPa m1/2 which is typical of brittle materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processing maps have been developed for hot deformation of Mg-2Zn-1Mn alloy in as-cast condition and after homogenization with a view to evaluate the influence of homogenization. Hot compression data in the temperature range 300-500degreesC and strain rate range 0.001-100 s(-1) were used for generating the processing map. In the map for the as-cast alloy the domain of dynamic recrystallization occurring, at 450degreesC and 0.1 s(-1) has merged with another domain occurring at 500degreesC and 0.001 s(-1) representing grain boundary cracking. The latter domain is eliminated by homogenization and the dynamic recrystallization domain expanded with a higher peak efficiency occurring at 500 degreesC and 0.05 s(-1). The flow localization occurring at strain rates higher than 5 s(-1) is unaffected by homogenization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing maps are being developed for use in optimising hot workability and controlling the microstructure of the product. The present investigation deals with the examination to assess the prediction of the processing maps for a 15Cr-15Ni-2.2Mo-0.3Ti austenitic stainless steel using forging and rolling tests at different temperatures in the range of 600-1200 degreesC. The tensile properties of these deformed products were evaluated at room temperature. The influence of the processing conditions, i.e. strain rate and temperature on the tensile properties of the deformed product were analysed to identify the optimum processing parameters. The results have shown good agreement between the regimes exhibited by the map and the properties of the rolled or forged product. The optimum parameters for processing of this steel were identified as rolling or press forging at temperatures above 1050 degreesC to obtain optimum product properties. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we evaluate performance of a real-world image processing application that uses a cross-correlation algorithm to compare a given image with a reference one. The algorithm processes individual images represented as 2-dimensional matrices of single-precision floating-point values using O(n4) operations involving dot-products and additions. We implement this algorithm on a nVidia GTX 285 GPU using CUDA, and also parallelize it for the Intel Xeon (Nehalem) and IBM Power7 processors, using both manual and automatic techniques. Pthreads and OpenMP with SSE and VSX vector intrinsics are used for the manually parallelized version, while a state-of-the-art optimization framework based on the polyhedral model is used for automatic compiler parallelization and optimization. The performance of this algorithm on the nVidia GPU suffers from: (1) a smaller shared memory, (2) unaligned device memory access patterns, (3) expensive atomic operations, and (4) weaker single-thread performance. On commodity multi-core processors, the application dataset is small enough to fit in caches, and when parallelized using a combination of task and short-vector data parallelism (via SSE/VSX) or through fully automatic optimization from the compiler, the application matches or beats the performance of the GPU version. The primary reasons for better multi-core performance include larger and faster caches, higher clock frequency, higher on-chip memory bandwidth, and better compiler optimization and support for parallelization. The best performing versions on the Power7, Nehalem, and GTX 285 run in 1.02s, 1.82s, and 1.75s, respectively. These results conclusively demonstrate that, under certain conditions, it is possible for a FLOP-intensive structured application running on a multi-core processor to match or even beat the performance of an equivalent GPU version.