889 resultados para hybrid composite material
Resumo:
The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS-CeO2 and GO-CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3 center dot 7H(2)O and GO, which yields the oxidized composite GO-CeO2. GO-CeO2 was hydrothermally reduced with ethylene glycol, at 120 A degrees C, yielding the reduced composite GS-CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.
Resumo:
The objective of this study was to compare the microhardness of two resin composites (microhybrid and nanoparticles). Light activation was performed with argon ion laser 1.56J (L) and halogen light 2.6J (H) was used as control. Measurements were taken on the irradiated surfaces and those opposite them, at thicknesses of 1, 2 and 3 mm. To evaluate the quality of polymerization, the percentages of maximum hardness were calculated (PMH). For statistical analysis the ANOVA and Tukey tests were used (p <= 0.05). To microhybrid was shown that the hardness with laser was inferior to the hardness achieved with halogen light, for both the 1 mm and 2 mm. The nanoparticles polymerized with laser, presented lower hardness even on the irradiated surface, than the same surface light activated with halogen light. The microhybrid attained a minimum PMH of 80% up to the thickness of 2 mm with halogen light, and with laser, only up to 1 mm. The nanoparticles attained a minimum PMH of 80% up to 3 mm thickness with halogen light and with laser this minimum was not obtained at any thickness. Based on these results, it could be concluded that light activation with argon ion laser is contra-indicated for the studied nanoparticles. Published by Elsevier GmbH.
Resumo:
Adequate polymerization plays an important role on the longevity of the composite resin restorations. Objectives: The aim of this study was to evaluate the effect of light-curing units, curing mode techniques and storage media on sorption, solubility and biaxial flexural strength (BFS) of a composite resin. Material and Methods: Two hundred and forty specimens were made of one composite resin (Esthet-X) in a stainless steel mold (2 mm x 8 mm 0), and divided into 24 groups (n=10) established according to the 4 study factors: light-curing units: quartz tungsten halogen (QTH) lamp and light-emitting diodes (LED); energy densities: 16 J/cm(2) and 20 J/cm(2); curing modes: conventional (CM) and pulse-delay (PD); and permeants: deionized water and 75% ethanol for 28 days. Sorption and solubility tests were performed according to ISO 4049:2000 specifications. All specimens were then tested for BFS according to ASTM F394-78 specification. Data were analyzed by three-way ANOVA followed by Tukey, Kruskal-Wallis and Mann-Whitney tests (alpha=0.05). Results: In general, no significant differences were found regarding sorption, solubility or BFS means for the light-curing units and curing modes (p>0.05). Only LED unit using 16 J/cm(2) and PD using 10 s produced higher sorption and solubility values than QTH. Otherwise, using CM (16 J/cm(2)), LED produced lower values of BFS than QTH (p<0.05). 75% ethanol permeant produced higher values of sorption and solubility and lower values of BFS than water (p<0.05). Conclusion: Ethanol storage media produced more damage on composite resin than water. In general the LED and QTH curing units using 16 and 20 J/cm(2) by CM and PD curing modes produced no influence on the sorption, solubility or BFS of the tested resin.
Resumo:
A previous study on the characterization of effective material properties of a d(15) thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k(15) and piezoelectric stress constant e(15) when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d(15) MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.
Resumo:
Direct composite resin restorations have become a viable alternative for patients that require anterior restorative procedures to be integrated to the other teeth that compose the smile, especially for presenting satisfactory esthetic results and minimum wear of the dental structure. Technological evolution along with a better understanding of the behavior of dental tissues to light incidence has allowed the development of new composite resins with better mechanical and optical properties, making possible a more artistic approach for anterior restorations. The combination of the increasing demand of patients for esthetics and the capacity to preserve the dental structure resulted in the development of different incremental techniques for restoring fractured anterior teeth in a natural way. In order to achieve esthetic excellence, dentists should understand and apply artistic and scientific principles when choosing color of restorative materials, as well as during the insertion of the composite resin. The discussion of these strategies will be divided into two papers. In this paper, the criteria for color and material selection to obtain a natural reproduction of the lost dental structures and an imperceptible restoration will be addressed.
Resumo:
The combination of semiconducting oxides and polyaniline in the nanoscale range may result in hybrid materials having enhanced properties, such as electrochromism and charge capacity. This paper reports the spectroscopic, morphological and electrochromic characterization of hybrid films made up of hexaniobate one-dimensional (1D) nanoscrolls and polyaniline prepared by the layer-by-layer assembly technique (LbL). Secondary electron imaging and backscattered electron imaging techniques performed using a scanning electron microscope showed that polyaniline is adsorbed on the hexaniobate nanoscrolls, which confirms the combination of the components in the nanoscale domain. UV-VIS-NIR electronic spectra of the LbL hybrid films showed the absorption tail in the NIR region, assigned to delocalized polarons of the polyaniline. Resonance Raman spectra in the 1000-1700 cm(-1) range indicated that hybrid films present a higher relative intensity of polaron bands at 1337 and 1508 cm(-1) than pristine polyaniline in the emeraldine salt form. These results suggest that hexaniobate nanoscrolls induce a secondary doping of polyaniline. The cyclic voltammetry (CV) data for the hybrid film showed a specific capacity of 870 C cm(-3). According to CV results, the synergistic effect on charge storage properties of the hybrid material is attributed to the enhanced electroactivity of the hexaniobate component in the LbL film. Spectroelectrochemical experiments showed that the electrochromic efficiencies at 420 nm are ca. -41 and 24 cm(2) C-1 as the potential changes from 0.8 to -0.9 V and from -0.9 to -1.8 V, respectively, whereas at 800 nm the efficiencies are ca. -55 and 8 cm(2) C-1 for the same potential ranges. The electrochromic efficiencies and multi-colour character of the LbL film of hexaniobate nanoscrolls and polyaniline indicate that this novel hybrid material is an interesting modified electrode for electrochromic devices.
Resumo:
This study evaluated the effectiveness of different sealants applied to a nanofiller composite resin. Forty specimens of Filtek Z-350 were obtained after inserting the material in a 6x3 mm stainless steel mold followed by light activation for 20 s. The groups were divided (n=10) according to the surface treatment applied: Control group (no surface treatment), Fortify, Fortify Plus and Biscover LV. The specimens were subjected to simulated toothbrushing using a 200 g load and 250 strokes/min to simulate 1 week, 1, 3 and 6 months and 1 and 3 years in the mouth, considering 10,000 cycles equivalent to 1 year of toothbrushing. Oral-B soft-bristle-tip toothbrush heads and Colgate Total dentifrice at a 1:2 water-dilution were used. After each simulated time, surface roughness was assessed in random triplicate readings. The data were submitted to two-way ANOVA and Tukey's test at a 95% confidence level. The specimens were observed under scanning electron microscopy (SEM) after each toothbrushing cycle. The control group was not significantly different (p>0.05) from the other groups, except for Fortify Plus (p<0.05), which was rougher. No significant differences (p>0.05) were observed at the 1-month assessment between the experimental and control groups. Fortify and Fortify Plus presented a rougher surface over time, differing from the baseline (p<0.05). Biscover LV did not differ (p>0.05) from the baseline at any time. None of the experimental groups showed a significantly better performance (p>0.05) than the control group at any time. SEM confirmed the differences found during the roughness testing. Surface penetrating sealants did not improve the roughness of nanofiller composite resin.
Resumo:
A previous study on the characterization of effective material properties of a d15 thickness-shear piezoelectric Macro-Fibre Composite (MFC) made of seven layers (Kapton, Acrylic, Electrode, Piezoceramic Fibre and Epoxy Composite, Electrode, Acrylic, Kapton) using a finite element homogenization method has shown that the packaging reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to significantly smaller effective electromechanical coupling coefficient k15 and piezoelectric stress constant e15 when compared to the piezoceramic fibre properties. Therefore, the main objective of this work is to perform a parametric analysis in which the effect of the variations of fibre volume fraction, Epoxy elastic modulus, electrode thickness and active layer thickness on the MFC effective material properties is evaluated. Results indicate that an effective d15 MFC should use relatively thick fibres having relatively high shear modulus and relatively stiff epoxy filler. On the other hand, the electrode thickness does not affect significantly the MFC performance.
Resumo:
The purpose of this article is to present a method which consists in the development of unit cell numerical models for smart composite materials with piezoelectric fibers made of PZT embedded in a non-piezoelectric matrix (epoxy resin). This method evaluates a globally homogeneous medium equivalent to the original composite, using a representative volume element (RVE). The suitable boundary conditions allow the simulation of all modes of the overall deformation arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. The numerical results are compared to other methods reported in the literature and also to results previously published, in order to evaluate the method proposal. In the second step, the method is applied to calculate the equivalent properties for smart composite materials with square cross section fibers. Results of comparison between different combinations of circular and square fiber geometries, observing the influence of the boundary conditions and arrangements are presented.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
Supramolecular architectures can be built-up from a single molecular component (building block) to obtain a complex of organic or inorganic interactions creating a new emergent condensed phase of matter, such as gels, liquid crystals and solid crystal. Further the generation of multicomponent supramolecular hybrid architecture, a mix of organic and inorganic components, increases the complexity of the condensed aggregate with functional properties useful for important areas of research, like material science, medicine and nanotechnology. One may design a molecule storing a recognition pattern and programming a informed self-organization process enables to grow-up into a hierarchical architecture. From a molecular level to a supramolecular level, in a bottom-up fashion, it is possible to create a new emergent structure-function, where the system, as a whole, is open to its own environment to exchange energy, matter and information. “The emergent property of the whole assembly is superior to the sum of a singles parts”. In this thesis I present new architectures and functional materials built through the selfassembly of guanosine, in the absence or in the presence of a cation, in solution and on the surface. By appropriate manipulation of intermolecular non-covalent interactions the spatial (structural) and temporal (dynamic) features of these supramolecular architectures are controlled. Guanosine G7 (5',3'-di-decanoil-deoxi-guanosine) is able to interconvert reversibly between a supramolecular polymer and a discrete octameric species by dynamic cation binding and release. Guanosine G16 (2',3'-O-Isopropylidene-5'-O-decylguanosine) shows selectivity binding from a mix of different cation's nature. Remarkably, reversibility, selectivity, adaptability and serendipity are mutual features to appreciate the creativity of a molecular self-organization complex system into a multilevelscale hierarchical growth. The creativity - in general sense, the creation of a new thing, a new thinking, a new functionality or a new structure - emerges from a contamination process of different disciplines such as biology, chemistry, physics, architecture, design, philosophy and science of complexity.
Resumo:
Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.
Resumo:
In this PhD thesis the crashworthiness topic is studied with the perspective of the development of a small-scale experimental test able to characterize a material in terms of energy absorption. The material properties obtained are then used to validate a nu- merical model of the experimental test itself. Consequently, the numerical model, calibrated on the specific ma- terial, can be extended to more complex structures and used to simulate their energy absorption behavior. The experimental activity started at University of Washington in Seattle, WA (USA) and continued at Second Faculty of Engi- neering, University of Bologna, Forl`ı (Italy), where the numerical model for the simulation of the experimental test was implemented and optimized.
Resumo:
The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, which comprises a press fit hafnium insert in a copper body holder, to improve its durability. Based on a deep analysis of both the scientific and patent literature, different solutions were proposed and tested. First, the behaviour of Hf cathodes when operating at high current levels (250A) in oxidizing atmosphere has been experimentally investigated optimizing, with respect to expected service life, the initial shape of the electrode emissive surface. Moreover, the microstructural modifications of the Hf insert in PAC electrodes were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Thereafter, the research activity focussed on producing, characterizing and testing prototypes of composite inserts, combining powders of a high thermal conductibility (Cu, Ag) and high thermionic emissivity (Hf, Zr) materials The complexity of the thermal plasma torch environment required and integrated approach also involving physical modelling. Accordingly, a detailed line-by-line method was developed to compute the net emission coefficient of Ar plasmas at temperatures ranging from 3000 K to 25000 K and pressure ranging from 50 kPa to 200 kPa, for optically thin and partially autoabsorbed plasmas. Finally, prototypal electrodes were studied and realized for a newly developed plasma source, based on the plasma needle concept and devoted to the generation of atmospheric pressure non-thermal plasmas for biomedical applications.