911 resultados para host-pathogen interactions
Resumo:
This study presents research findings to informthe design and development of innovativemobile services aiming to enable collocated people to interact with each other in public urban places. The main goal of this research is to provide applications and deliver guidelines to positively influence the user experience of different public urban places during everyday urban life. This study describes the design and evaluation of mobile content and services enabling mobile mediated interactions in an anonymous way. The research described in this thesis is threefold. First, this study investigates how Information and Communication Technology (ICT) can be utilised in particular urban public places to influence the experience of urban dwellers during everyday life. The research into urban residents and public places guides the design of three different technologies that form case studies to investigate and discover possibilities to digitally augment the public urban space and make the invisible data of our interactions in the urban environment visible. • Capital Music enables urban dwellers to listen to their music on their mobile devices as usual but also visualises the artworks of songs currently being played and listened to by other users in ones’ vicinity. • PlaceTagz uses QR codes printed on stickers that link to a digital message board enabling collocated users to interact with each other over time resulting in a place-based digital memory. • Sapporo World Window, Brisbane Hot Spots, and YourScreen are interactive content applications allowing people to share data with their mobile phones on public urban screens. The applications employ mobile phones to mediate interactions in form of location and video sharing. Second, this study sets out to explore the quality and nature of the experiences created through the developed and deployed case study applications. The development of a user experience framework for evaluating mobile mediated interactions in urban public places is described and applied within each case. Third, drawing on research from urban sociology, psychology, urban design, and the findings from this study, this thesis discusses how such interactions can have an impact on the urban experience.
Resumo:
This study aims to open-up the black box of the boardroom by directly observing directors’ interactions during meetings to better understand board processes. Design/methodology/approach: We analyse videotaped observations of board meetings at two Australian companies to develop insights into what directors do in meetings and how they participate in decision-making processes. The direct observations are triangulated with semi-structured interviews, mini-surveys and document reviews. Findings: Our analyses lead to two key findings: (i) while board meetings appear similar at a surface-level, boardroom interactions vary significantly at a deeper level (i.e. board members participate differently during different stages of discussions) and (ii) factors at multiple levels of analysis explain differences in interaction patterns, revealing the complex and nested nature of boardroom discussions. Research implications: By documenting significant intra- and inter-board meeting differences our study (i) challenges the widespread notion of board meetings as rather homogeneous and monolithic, (ii) points towards agenda items as a new unit of analysis (iii) highlights the need for more multi-level analyses in a board setting. Practical implications: While policy makers have been largely occupied with the “right” board composition, our findings suggest that decision outcomes or roles’ execution could be potentially affected by interactions at a board level. Differences in board meeting styles might explain prior ambiguous board structure-performance results, enhancing the need for greater normative consideration of how boards do their work. Originality/value: Our study complements existing research on boardroom dynamics and provides a systematic account of director interactions during board meetings.
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.
Resumo:
The effect of experience on pre- and post-alighting host selection in adult female Helicoverpa armigera was tested in an indoor flight cage, and in a large greenhouse. The moths had experienced either tobacco or tomato plants (both are hosts of H. armigera) for 3 days, or were given no experience. Individuals were then released and their host selection assessed. All individuals caught in the greenhouse were identified and tested for post-alighting acceptance on each host. Experience significantly influenced both pre- and post-alighting host selection in ovipositing moths. This modification in behaviour is attributed to 'learning', and presents the first detailed evidence for learning in moths. Possible behavioural mechanisms involved are discussed, and a hypothesis is presented regarding learning in post-alighting host acceptance. The existence of learning in H. armigera, a highly polyphagous agricultural pest, is discussed in the light of current theories on environmental predictability and the advantages of learning. Copyright 1998 The Association for the Study of Animal Behaviour.
Resumo:
Insect learning can change the preferences an egg laying female displays towards different host plant species. Current hypotheses propose that learning may be advantageous in adult host selection behaviour through improved recognition, accuracy or selectivity in foraging. In this paper, we present a hypothesis for when learning can be advantageous without such improvements in adult host foraging. Specifically, that learning can be an advantageous strategy for egg laying females when larvae must feed on more than one plant in order to complete development, if the fitness of larvae is reduced when they switch to a different host species. Here, larvae benefit from developing on the most abundant host species, which is the most likely choice of host for an adult insect which increases its preference for a host species through learning. The hypothesis is formalised with a mathematical model and we provide evidence from studies on the behavioural ecology of a number of insect species which demonstrate that the assumptions of this hypothesis may frequently be fulfilled in nature. We discuss how multiple mechanisms may convey advantages in insect learning and that benefits to larval development, which have so far been overlooked, should be considered in explanations for the widespread occurrence of learning.
Resumo:
The polyphagous moth Helicoverpa armigera (Hübner) is one of the world's most important agricultural pests. A number of existing approaches and future designs for management of H. armigera rely on the assumption that moths do not exhibit either genetically and/or non-genetically based variation for host plant utilization. We review recent empirical evidence demonstrating that both these forms of variation influence host plant use in this moth. The significance of this variation in H. armigera in relation to current and future pest management strategies is examined. We provide recommendations on future research needs and directions for sustainable management of H. armigera, under a framework that includes consideration of intra-specific variation for host use relevant in this and other similar pest species.
Resumo:
Learning can allow individuals to increase their fitness in particular environments. The advantage to learning depends on the predictability of the environment and the extent to which animals can adjust their behaviour. Earlier general models have investigated when environmental predictability might favour the evolution of learning in foraging animals. Here, we construct a theoretical model that predicts the advantages to learning using a specific biological example: oviposition in the Lepidoptera. Our model includes environmental and behavioural complexities relevant to host selection in these insects and tests whether the predictions of the general models still hold. Our results demonstrate how the advantage of learning is maximised when within-generation variability is minimised (the local environment consists mainly of a single host plant species) and between-generation variability is maximised (different host plant species are the most common in different generations). We discuss how our results: (a) can be applied to recent empirical work in different lepidopteran species and (b) predict an important role of learning in lepidopteran agricultural pests.
Resumo:
The host location behaviour of foraging caterpillars has received little attention, despite the wealth of theoretical and empirical studies that have been directed at this behavioural trait in adult Lepidoptera. Here, we study caterpillars of the moth Heliothis punctifera Walker (Lepidoptera: Noctuidae), which inhabits the arid inland desert areas of Australia. Caterpillars of this species consume many flowerheads before completing development and can be observed moving across the sand in search of new hosts. Consequently, if host location behaviour favours attraction to certain plant species, it might be expected to influence the distribution and abundance of caterpillars in the field. We present field data showing that H. punctifera caterpillars are unevenly distributed throughout mixed patches of two of its host species, with a higher abundance on Senecio gregorii F. Muell., the annual yellow top, compared to Myriocephalus stuartii (F. Muell. & Sond.) Benth., the poached egg daisy (both Asteraceae). Using laboratory studies, we test whether this distribution may, in part, be due to host location behaviour of caterpillars. Our results show that caterpillars exhibit a preference for locating S. gregorii in their pre- and post-contact foraging behaviour. In addition, our results provide evidence that feeding history plays a role in host location behaviour in this insect. We propose that key features of the desert environment and the ecology of H. punctifera would favour adaptations to host location behaviour by immatures.
Resumo:
Evolutionary theory predicts that herbivorous insects should lay eggs on plants in a way that reflects the suitability of each plant species for larval development. Empirical studies, however, often fail to find any relationship between an adult insect’s choice of host–plant and offspring fitness, and in such cases, it is generally assumed that other ‘missing’ factors (e.g. predation, host–plant abundance, learning and adult feeding sites) must be contributing to overall host suitability. Here, I consider an alternative theory – that a fitness cost inherent in the olfactory mechanism could constrain the evolution of insect host selection. I begin by reviewing current knowledge of odour processing in the insect antennal lobe with the aid of a simple schematic: the aim being to explain the workings of this mechanism to scientists who do not have prior knowledge in this field. I then use the schematic to explore how an insect’s perception of host and non-host odours is governed by a set of processing rules, or algorithm. Under the assumptions of this mechanistic view, the perception of every plant odour is interrelated, and seemingly bad host choices can still arise as part of an overall adaptive behavioural strategy. I discuss how an understanding of mechanism can improve the interpretation of theoretical and empirical studies in insect behaviour and evolution.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
The impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis–Sinclair potentials. The incident kinetic energy (Ein) ranged from 0.01 to 30 eV per atom. The structural and dynamical properties of Al clusters on Ni surfaces were found to be strongly dependent on the impact energy. At much lower energy, the Al cluster deposited on the surface as a bulk molecule. However, the original icosahedral structure was transformed to the fcc-like one due to the interaction and the structure mismatch between the Al cluster and Ni surface. With increasing the impinging energy, the cluster was deformed severely when it contacted the substrate, and then broken up due to dense collision cascade. The cluster atoms spread on the surface at last. When the impact energy was higher than 11 eV, the defects, such as Al substitutions and Ni ejections, were observed. The simulation indicated that there exists an optimum energy range, which is suitable for Al epitaxial growth in layer by layer. In addition, at higher impinging energy, the atomic exchange between Al and Ni atoms will be favourable to surface alloying.
Resumo:
Targeting females at high school or earlier may be a key towards engaging them in science, technology, engineering and mathematics (STEM) education. This ethnographic study, part of a three-year longitudinal research project, investigated Year 8 female students’ learning about engineering concepts associated with designing, constructing, testing, and evaluating a catapult. There was a series of lead-up lessons and four lessons for the catapult challenge (total of 18 x 45-minute lessons) over a nine-week period. Data from two girls within a focus group showed that they needed to: (1) receive clarification on engineering terms to facilitate more fluent discourse, (2) question and debate conceptual understandings without peers being judgemental, and (3) have multiple opportunities for engaging with materials towards designing, constructing and explaining key concepts learnt. There are implications for teachers facilitating STEM education, such as: clarifying STEM terms, articulating how students can interact in non-judgmental ways, and providing multiple opportunities for interacting within engineering education.
Resumo:
Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism
Resumo:
FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.