832 resultados para high-intensity femtosecond laser pulse


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two- and three-photon detachment rates have been obtained for F- using several expansions in the R-matrix Floquet approach. These rates are compared with other theoretical and experimental results. The use of Hartree-Fock wavefunctions for the ground state of F with addition of continuum electrons does not lead to agreement with experiment for two- and three-photon detachment. By adding correlation terms, agreement with experiment and other theoretical results is improved considerably, demonstrating the importance of electron correlation effects. However, convergence with respect to the wavefunction expansion cannot be established, we also study the intensity dependence of multiphoton detachment rates for F- at the Nd-YAG frequency. Due to the ponderomotive shift the three-photon detachment channel closes at an intensity of 8.5 x 10(11) W cm(-2) and the influence of this channel closure on the multiphoton detachment peaks is illustrated by determining the heights of the excess-photon peaks obtained using a Gaussian laser pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10 4 times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration driven by high intensity laser pulses is attracting an impressive and steadily increasing research effort. Experiments over the past 10-15 years have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties, which have stimulated interest in a number of innovative applications. While most of this work has been based on sheath acceleration processes, where space-charge fields are established by relativistic electrons at surfaces of the irradiated target, a number of novel mechanisms has been the focus of recent theoretical and experimental activities. This paper will provide a brief review of the state of the art in the field of laser-driven ion acceleration, with particular attention to recent developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L-p/lambda <1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L-p -> 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.

Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W/cm 2 laser pulse by cryogenically freezing heavy water (D<inf>2</inf>O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study synchrotron radiation emission from laser interaction with near critical density (NCD) plasmas at intensities of 1021 W∕cm2 using three-dimensional particle-in-cell simulations. It is found that the electron dynamics depend on the laser shaping process in NCD plasmas, and thus the angular distribution of the emitted photons changes as the laser pulse evolves in space and time. The final properties of the resulting synchrotron radiation, such as its overall energy, the critical photon energy, and the radiation angular distribution, are strongly affected by the laser polarization and plasma density. By using a 420 TW∕50 fs laser pulse at the optimal plasma density (∼1nc ), about 108 photons/0.1% bandwidth are produced at multi-MeV photon energies, providing a route to ultraintense, femtosecond gamma ray pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By contrast to the Target Normal Sheath acceleration (TNSA) mechanism [1], Radiation Pressure Acceleration (RPA) is currently attracting a substantial amount of experimental [2,3] and theoretical [4-6] attention worldwide due to its superior scaling in terms of ion energy and laser-ion conversion efficiency. Employing Vulcan Petawatt lasers of the Rutherford Appleton Laboratory, UK, both the Hole-boring (HB) and the Light-Sail (LS) regimes of the RPA have been extensively explored. When the target thickness is of the order of hole-boring velocity times the laser pulse duration, highly collimated plasma jets of near solid density are ejected from the foil, lasting up to ns after the laser interaction. By changing the linear polarisation of the laser to circular, improved homogeneity in the jet's spatial density profile is achieved which suggests more uniform and sustained radiation pressure drive on target ions. By decreasing the target areal density or increasing irradiance on the target, the LS regime of the RPA is accessed where relatively high flux (~ 1012 particles/MeV/Sr) of ions are accelerated to ~ 10 MeV/nucleon energies in a narrow energy bandwidth. The ion energy scaling obtained from the parametric scans agrees well with theoretical estimation based on RPA mechanism and the narrow bandwidth feature in the ion spectra is studied by 2D particle-in-simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz.