974 resultados para heavy ion beam
Resumo:
中能重离子碰撞中的核反应机制及其形成的高激发热核的性质是中能重离子物理研究的重要领域,而高激发热核性质的同位旋效应研究是这一领域的热点之一。选取了具有不同N亿比的反应体系以研究激发热核性质的同位旋效应。本论文涉及的反应系统三对共六个反应体系:55MeV/u~(40)Ar+~(58.64)Ni、30MeV/u~(40)Ar+~(112,124)Sn、35Mev/u~(36)Ar+~(112,124)Sn,这六个反应体系的N/z比分别为1.13,1.26、1.24,1.41、1.18,1.35。分别从带电粒子多重性、相对态布居核温度、关联函数等角度研究了这三对反应体系高激发热核性质的同位旋效应。在55MeV/u 40Ar+58,64Ni核反应中,用兰州4π带电粒子探测器阵列测量带电粒子多重性,研究了He和中等质量碎片的产额与反应系统的同位旋的关系,以及这种同位旋效应与反应系统的碰撞参数(即碰撞的激烈程度)、系统的激发能的变化关系。对两个反应系统,观察到带电粒子多重性中He的比分随带电粒子多重性的增加而增大,带电粒子多重性中IMF的比分随带电粒子多重性的增加而先增大,后减小的规律。两个反应系统虽然具有相同的核电荷数,但轻粒子He和中等质量碎片在多重性中的比分有明显的同位旋相关性。在30Mev/u40Sn、35MeV/u~(40)Ar~(112,124)Sn、35Mev/u 36Ar+112,124Sn反应中用13单元望远镜探测器阵列测量了小角关联粒子。由价a关联函数提取了30Mev/u 40Ar+112,12Sn反应系统中激发热核的态布居核温。对于不同同位旋反应系统舜UAr+112Sn和4VAr+124Sn,提取的相对杰布居核温度分别是4.18+0.28/0.21MEV和4.10士0.22/0.20MeV;考察态布居核温度和粒子能量的关薰时,观察到两个系统的发射温度均随着粒子能量的增加而降低,缺中子系统40Ar+l12Sn中由低能时的5.13士.30/0.26MEV降低到高能时的3.87士0.37/0.29MeV,丰中子系统40Ar+124Sn中由低能时的5.39士0.30/0.26MeV降低到高能时的3.32士MeV。讨论了这种布居态核温度的同位旋相关性。在35Mev/u 36Ar+112,124Sn反应中提取了洲F(3‘25)的约化速度关联函数。相对丰中子36Ar+124Sn系统的IMF关联函数在小约化速度处反关联程度更强,表明36Ai+124Sn系统的发射IMF的平均时间更短。用MENEKA程序提取了两个系统IMF的平均发射时间,36Ai+112sn反应中IMF的发射时间约为150fm/c,而36Ar十124Sn反应IME的发射时间稍短,约为120fm/c。以关联IMF的单核子总能量/动量为窗条件,发现低能IMF关联函数几乎没有差别,而高能IMF关联函数在小约化速度处的差别更为明显,表明两个系统IMF关联函数的同位旋效应可能来自于IMF的早期发射。为了得到进一步的信息,我们提取了高动量窗条件下的IMF发射时间,它们比平均发射时间短,36Ar+112Sn反应中高能IMF的发射时间约为100蒯c,而36Ai+124Sn反应中IMF的发射时间则更短,约为50fm/c。
Resumo:
本文对ECR离子源引出的混合束流传输特性进行了较为深入讨论,并在此基础上,对ECR混合束流传输的模拟计算以及空间电荷中和方法,从理论和实验两方面做了较为深入的研究。在同时考虑到离子空间电荷效应,离子一离子碰撞所造成的离子间动量交换,以及离子与管道剩余气体作用、不同电荷态离子之间的作用所造成的电荷交换效应的基础上,结合原子物理方法和蒙特卡罗方法,充分利用计算机可视化程序设计方法,独立成功研制了一套专门的混合束传输程序McIBs1.0,并且对中国科学院近代物理研究所原子试验平台(14.5GHzECR离子源及相关的传输线)做了初步的模拟计算。通过计算发现Glaser透镜确实对离子具有很强的分选作用。同时发现,在一定的条件下,可以依靠Glaser透镜对混合束聚焦形成空心束流。另一方面,对Glaser透镜在ECR混合束传输过程中的作用做了较为深入细致的分析研究。除发现Glaser透镜具有以上所提到的分选功能以及可以在一定条件下形成空心束的功能外,还提出了Glaser透镜和ECR离子源弓!出线包可能能够共同形成磁约束空间电荷透镜的新观点。完成了负高压电极法中和束流空间电荷效应的实验研究,其典型结果是,在负偏压电极加一6KV负高压时,对于O6+,在终端法拉第筒上取得了束流强度与原束流强度相比增加幅度为26%<△I<30%的较好试验结果。同时自行构建模型,对其做了仔细的理论分析和计算。针对 ECR高电荷态强流离子束,在该领域首次独立提出使用负电性气体中和高电荷态混合离子束空间电荷效应的新方法,完成实验,证明了其可行性和可靠性。并取得了通过该方法,使O7+束流稳定增加12%、Ar11+束流稳定增长14%、Ar8+稳定增长39%的较好结果。
Resumo:
DNA是辐射损伤的关键靶分子.有关高LET射线诱导的D\A双链断裂(DSB)的机理之一,即DNA上是否存在辐射敏感性序列己逐步成为辐射生物学研究的热点基于重离子对DNA损伤的重要性和复杂性,刘DNA DSB非随机分布现象和DNA上是否存在敏感性序列,口前仍颇有争议,对其机理没有统一的解释.木论文瞄准DNA辐照敏感性这一前沿课题,从实验和理论两个方面进行研究.本研究的两个主要目的:1.实验卜用重离子对体外D狱照射,验证垂离子诱导的DSB非随机分布.2.理论上建立模型,揭示DNA簇损伤机理,预测。SB的分布.实验的材料与方法:采用兰州重离子加速器装置引出的7.19MeV/u20UNe7+,5.19 MeV/u 22No2+离了辐照质粒DNA.对辐照样晶,采用凝胶电泳分析!〕M链断裂分布;采用红外技术分析DM的微观损伤.理论模型:对DSB非随机分布机理提出假设:一方面与重离子在其径迹周围产生的人量低能次级电子有关;另一方而与DNA碱基的化学性质以及碱基的排列特征有关,即DNA上存在敏感性序列.建立了DNA吸附低能电子共振激发引起D\A损伤模型,探索了将量子化学从头计算用在DNA损伤机理的研究中.结果:1.电泳结梁证实了DSB片断的非随机性分布,结果还发现,大剂量照射时DNA出现严重的交联,剂量越大交联产额越高,而且交联片断分布也是非随机的.2.红外分析发现DNA上关键基团的特征峰振动强度随剂量的增加而增加,剂量效应明显.3.得出了质粒DNA三种形式变化与剂量的关系。4.掌握了基于LinLlx系统的Trax对重离子深度剂量模拟.5.用量子化学计算了小分子的电子激发势能面以及DNA上小官能团,以及寡核营酸的化学性质.
Resumo:
本文要解决CSR控制系统中扮制信号同步传送问题。HIRFL_CSR(Heavy Ion Research Facility at LanKZhou-Cooling StorageRing兰州重离子冷却储存环)是国家九八爪大科学工程之一,它的控制是一个非常庞大而复杂的系统,它由多个子系统构成,各个子系统之间的协调同步是HIRFL-CSR运行的关键,也是HIRFL-CSR从控制系统的核心问题之一。。CSR工程的同步系统包括环内各设备之间的同步,环与门前端务器的同步等等。同步系统的实现应该在保证协调同步的雄础上,还要保证整个控制系统的稳定性,实时性,准确性和抗干扰性。本文的披个解决方案是建立在直按序列扩频通信技术上的。扩频通信系统可以增强控制信一号的抗干扰性,完成f言号的可靠传输。在信号发送端,进行恭带信号的载波调制,然后经过pN码的扩频调制,进入信道传输;在接收端,先进行四码的解扩一,然后进行载波信号的解调,还原为发送端的信号。在整个过程中保证CSI又控制信号的同步,包括载波同步,位同步和群同步。本文主要工作和研究内容是CSR系统中的载波同步传输算法的不开究,设计和实现。主要工作包括(1)不叶究控制洁号在通信算法中的性能,在算法分析的基础上,使用MATLAB实现模拟控制信号通信过程,同时进行传送信号分析和噪声功率分析,测试可行性:(2)在仿真可行的情况下,把整个通信过程全部或者部分写为可以执行的C或者汇编代码,在TMS323C6711DSK板进行程序调试;(3)把可执;行的释序下我到以TrAG为接口白如醚件协尔32C6713DSP模块,实现在CSR系统中控制信号的传送。本文目的是解决控制信号的同步通愉问题,对于该问题的传输分析和同步实现以及提出的下一步研究,在C双控制I具有很重要的意义,同时也对于类似问题的解决有重要价值。
Resumo:
束流储存寿命对于储存环的建造和内靶实验都是一个很重要的参数。由于重离子冷却储存环工程的优化,HIRFL-CSR主环将能提供2.SGev的质子束流,这为强子物理研究提供了一个很好的平台。设计并建立一套针对强子物理的内靶系统己经列入到计划当中,与内靶相关的束流储存寿命研究也随之展开。本论文首先分析了在内靶实验中束流储存寿命的影响因素,即真空管道中的残余气体分子、冷却电子束和内靶,以及束内散射和集体效应等,并用理论解析和数值计算的方法,对各种因素的影响程度进行估算。研究表明,内靶散射影响下的束流储存寿命比其他因素导致的短2~3个数量级,内靶是影响束流寿命的决定性因素。其次,对CSRm将来实验中主要用到的Pelle七内靶和碳薄膜靶做了简要介绍,并计算了它们的有效靶厚大约为lx10、切ms/cmZ和5火1017atoms/CmZ。再者,用理论推导方法,对内靶的多次库仑散射和束流能量损失扰动对束流的影响进行了研究,推导了束流的横向和纵向发射度增长与束流每次打靶产生的小库仑散射角均方值气s和相对动量分散气了:之间的关系,并通过数值计算的方法给出了CSRm内靶实验条件的发射度增长曲线。最后,建立了内靶散射的MOnte-Carlo模拟程序,在模拟数据的基础上,总结研究束流的发射度增长规律,以及束流存储寿命与内靶厚度和束流能量的关系。计算表明,当存在Pellet靶(1、1016atoms/cm2)和c膜(5*1017 atoms/cmZ)时,2800Mev质子束的束流储存寿命分别为397秒和0.7秒,将来的内靶实验亮度大约为2 x 1033cm-2·s-1。
Resumo:
相对于非对称核物质状态方程,对称核物质的状态方程己基本确定。然而不同的微观·唯象多体方法对非对称核物质状态方程(尤其是对称能)的预言很不一致。利用动量相关的标量势与矢量势(对称势)及介质修正的核子一核子散射截面,在工Buuo4输运模型框架下我们对重粒子碰撞产生的丰中子核物质的状态方程进行了研究。我们发现在低密情况下对称能E32(p/po),核物质同位旋依赖部分的等压不可压缩系数为K-55OMeF时能够较好地再现NSCL/MSU实验数据。在高密情况下π~-/π~+谱的横动量与动能分布,π~-谱的动能分布,π-的多重数,中快度前平衡核子发射的中一质比,中快度前平衡核子发射的同位旋非对称度,发射核子的中一质微分流,中一质微分椭圆流以及质子椭圆流是对对称能敏感的几个探针。其中对对称能最理想的探针是π-/π+谱的横动量与动能分布、中快度前平衡核子发射的同位旋非对称度以及发射核子的中一质微分流。利用这些对对称能敏感的观测量,通过与实验数据的对照我们就可以得出关于对称能的高密行为的重要信息。
Resumo:
本文建立了生物组织中最重要成分--液态水中的重离子径迹结构Monte Carlo计算模型,用它来研究重离子径迹内的能量沉积分布。最终将计算结果同实验值或其它#dalta#射线理论计算结果进行了比较。另外,由模型的电子传输慢化部分或OREC和CPA程序计算得到的单电子径迹中的绝对和相对能量沉积频率结果来看,这些单径迹效应结果都支持了低能重离子注入造成深部生物效应的作用机理--软x射线机制。本文的目的在于建立细胞损伤强度和损伤范围与重离子参量之间的关系,从理论上探讨重离子生物效应的机理
Resumo:
直到八十年代中期,人名才发现耗散反应激发函数中存在振荡结构这种新现象。通过对激发函数振荡结构能量自关联函数的研究是获得复合核能级宽度的一个重要手段,Brick推广了Ericson的复合核统计理论,并成功地用于分析耗散反应激发函数振荡结构的研究,提取相应的能量相关宽度Г。本文报道了19F+51V耗散反应激发函数振荡结构的实验研究结果,用能级部分重叠模型对角动量相干引起的截面涨落、能量自关联函数进行了计算分析。实验中采用ΔE-E粒子鉴别方法和飞行时间TOF测量技术队102.25Mev~109.5Mev19F+51V反应类弹产物同时进行电荷和质量鉴别。首次在各个元素、同量异位素(质量数A为常数)和同位素的耗散反应激发函数中观察到振荡结构,并进一步证实了反应产物的各个出射道之间存在着相关。检验了用小角度弹性散射计数做相对归一对激发函数振荡结构研究可能造成的影响。分别采用能量自关联函数方法和谱密度方法提取了各个激发函数的能量相关宽度Г,其值大小为~350kev,并与出射道的电荷数Z、质量数A和中质比N/Z有很大的依赖关系,表明出射产物与入射弹核的差别越打所需的反应时间久越长。首次得到了Г随N/Z值变化的趋势,Г随N/Z的分布为Gauss型,通过分析分布的宽度得到其大小随相互作用时间的增长而线性增大的结果,并进一步提取了电荷扩散系数,证实了反应系统已达到电荷平衡。Г的数值随出射角的增大有减小的趋势。双核系统的转动造成了Г随出射角的变化关系,实验提取的双核系统平均角速度发生了较强的阻尼。用能级部分重叠模型在适当的精度内对激发函数和能力自关联函数进行了模拟。计算分析说明入射道的动能大多数转化为双核系统的转动能,只有较少部分转化为双核系统的内禀激发能,双核系统被激发到能级密度不太大的区域,能级之间的部分重叠引起截面的振荡行为。入射道角动量的相互干涉、双核系统能级的部分重叠和出射道的相互关联使得耗散反应的激发函数表现出其特有的规律性。
Resumo:
我所SSC120KW高频发射机是HIRFL(Heavy Ion Research Facility, LanZhou)的一个重要组成部分,长期的调机以及运行经验表明:两台发射机存在调机程序复杂运行不稳定、运行维护费用高等缺点。本论文讨论一种改进方案,并且介绍了大功率放大器的设计方法。 该方案采用国产电子管TH537作为功率放大管,槽路电感固定,采用一个可变电容调谐,另一个可变电容调整负载。槽路结构简单,调整方便,同时槽路元件较现在方案少,能节省建造和维护费用。论文中详细介绍了电子管特性的计算,槽路得设计方法,并对中和与消除寄生振荡的方法作了扼要的介绍。
Resumo:
兰州重离子研究装置(Heavy Ion Research Facility at LanZhou,HIRFL)是由一台1.7m扇聚焦回旋加速器(SFC)与一台能量常数K=450的分离扇回旋加速器(SSC)组成的加速器系统。束流相位测量系统式束流诊断系统中的一个重要部分,对等时场优化等具有十分重要的作用。HIRFL束流中心相位测量系统于1985年完成了桌面实验,但由于测量精度低,现场抗干扰能力差,一直未能投入使用。 本课题的目的就是找出原系统存在的问题,逐一解决,以便提高其可靠性与测量精度,达到设计要求。 在通过一系列的电子学部分改进和SSC中心相位探针改造之后,于1995年7月第一次测出了SSC中心束流相位。此后,逐步完善改进电子学硬件部分,同时全新设计了系统控制软件,提高了在SFC和SSC上束流相位的测量精度,终于使该系统达到了测量精度为±2.75°~±1.5°的水平。 本论文第一、二章阐述了束流中心相位测量原理和HIRFL束流中心相位测量系统的工作原理,这是本工作的基础和出发点。 在本论文的第三章中,分析了原系统中存在的主要问题。实践使用中可以看出原系统灵敏度低,抗干扰能力差,可靠性差,测量精度低。为了定量判断系统存在的问题,我们设计了自检系统。利用自检系统我们测出原系统测量精度为±6°,且检测出原系统sin,cos正交输出异常。同时测量了原系统多路开关串话量,大多数道与道之间高于最低要求的-40dB,最差只有-20dB,证明存在严重的道间干扰。 本文的第四章中,针对原系统的可靠性差和精度低的两个问题,采取了硬件与软件两方面的各种措施,对系统加以改进。首先,为了提高系统的可靠性,必须提高系统抗干扰能力。为此,我们进行了两个方面的工作,一是根据我们现有条件自行设计了一种新的电缆电子学长度校正方法,大大减少了电缆间相差(小于0.3°),从而有效地提高了系统的抗干扰能力。这种方法不但可以用来校正相同介质电缆,而且可以用来校正不同介质电缆的电子学长度。二是设计了新的信号预选器,其串话量达到约-70dB,并完善了电磁屏蔽,使其完全达到了设计要求。在改进硬件的同时,为了提高可靠性,重新设计了系统控制软件。新的软件测量数据可靠,漏报概率为10-3,操作简便直观,并易于发展。其次,我们工作的重点是提高测量精度。根据自检结果,我们采取了如下措施: (1) 通过对自检数据进行分析,并与理论分析比较,发现问题主要存在于90°移相电路中。而其后的检测证实了这一点。重新调整90°移相电路,并对90°电缆相移进行了精确的校正,从原81.5°校正为90.6°,从而使系统的精度从±6°提高到±4°。 (2) 通过自检数据和理论分析发现鉴相器存在输出增益不平衡,在解决问题之后使系统测量精度达到了±2.75°~±1.5°。 在本文的第五章中,对加速器运行时的中心束流相位测量结果进行了详细分析。结果证明,测量数据可靠,能正确反映出磁场变化情况,测量重复误差达到了±0.5°,从而说明改进后的中心束流相位测量系统性能良好,达到了设计指标。
Resumo:
兰州重离子研究装置(Heavy Ion ReSearch Facility at Lanzhou, HIRFL)是我们研究所得一个大型实验装置,它包括SFC和SSC两个加速器和两条束运线。本论文比较系统地介绍了HIRFL束流诊断系统的改造和SFC分布式控制系统的设计。 在第一章中,简单介绍了国际加速器控制系统的现状和HIRFL控制系统中存在的问题。在第二章一般性地阐述了描述束流品质的各个参数,这些参数的测量原理以及测量这些参数的装置。本论文的第三章详细叙述了HIRFL束流诊断系统的改造方法、过程和结果,结果准确可靠,人机界面非常友好,给调束带来很大的方便。第四章介绍了计算机网络的基本概念,描述了在选用TCP/IP协议的条件下,利用Socket(套接字)实现Windows环境下的实时网络通信的具体过程和步骤,其中参与通信的双方是以客户机和服务器的形式存在的。第五章讲述了SFC分布式控制系统的实现,并在实时网络通信的基础上完成了ECR源扫谱程序和I/O级的网络通信程序。 论文的最后一章,介绍了对HIRFL束运线进行优化控制的一个设想,利用系统辨识的方法可以得到束运线的数学模型,并提供了自适应控制的实现细节,这也是作者对实现HIRFL优化控制的一个愿望。
Resumo:
We report the measurements of conductivity, I-V curve, and magnetoresistance of a single Au/polyaniline microfiber with a core-shell structure, on which a pair of platinum microleads was attached by focused ion beam. The Au/polyaniline microfiber shows a much higher conductivity (similar to 110 S/cm at 300 K) and a much weaker temperature dependence of resistance [R(4 K)/R(300 K)=5.1] as compared with those of a single polyaniline microtube [sigma(RT)=30-40 S/cm and R(4 K)/R(300 K)=16.2]. The power-law dependence of R(T)proportional to T-beta, with beta=0.38, indicates that the measured Au/polyaniline microfiber is lying in the critical regime of the metal-insulator transition. In addition, the microfiber shows a H-2 dependent positive magnetoresistance at 2, 4, and 6 K.
Resumo:
The soft x-ray reflectivity of multilayer films is affected by the surface roughness on the transverse nanometer scale. Scanning tunneling microscopy (STM) is an ideal instrument for providing high-lateral-resolution roughness measurements for soft x-ray multilayer films that cannot be obtained with other types of instruments on the transverse nanometer scale. The surface roughnesses of Mo/Si, Mo/C, and W/Si soft x-ray multilayer films prepared by an ion-beam-sputtering technique were measured with a STM on the vertical and transverse attributes. The film roughnesses and average spatial wavelengths added to the substrates depend on the multilayer film fabrication conditions, i.e., material combinations, number of layers, and individual layer thickness. These were estimated to lead to a loss of specular reflectivity and variations of the soft x-ray scattering angle distribution. This method points the way to further studies of soft x-ray multilayer film functional properties and can be used as basic guidance for selecting the best coating conditions in the fabrications of soft x-ray multilayer films. (C) 1996 American Vacuum Society.
Resumo:
Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).
Resumo:
The increasing complexity of new manufacturing processes and the continuously growing range of fabrication options mean that critical decisions about the insertion of new technologies must be made as early as possible in the design process. Mitigating the technology risks under limited knowledge is a key factor and major requirement to secure a successful development of the new technologies. In order to address this challenge, a risk mitigation methodology that incorporates both qualitative and quantitative analysis is required. This paper outlines the methodology being developed under a major UK grand challenge project - 3D-Mintegration. The main focus is on identifying the risks through identification of the product key characteristics using a product breakdown approach. The assessment of the identified risks uses quantification and prioritisation techniques to evaluate and rank the risks. Traditional statistical process control based on process capability and six sigma concepts are applied to measure the process capability as a result of the risks that have been identified. This paper also details a numerical approach that can be used to undertake risk analysis. This methodology is based on computational framework where modelling and statistical techniques are integrated. Also, an example of modeling and simulation technique is given using focused ion beam which is among the investigated in the project manufacturing processes.