936 resultados para growth and yield
Resumo:
Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490
Resumo:
OBJECTIVE In Europe, growth hormone (GH) treatment for children born small for gestational age (SGA) can only be initiated after 4 years of age. However, younger age at treatment initiation is a predictor of favourable response. To assess the effect of GH treatment on early growth and cognitive functioning in very young (<30 months), short-stature children born SGA. DESIGN A 2-year, randomized controlled, multicentre study (NCT00627523; EGN study), in which patients received either GH treatment or no treatment for 24 months. PATIENTS Children aged 19-29 months diagnosed as SGA at birth, and for whom sufficient early growth data were available, were eligible. Patients were randomized (1:1) to GH treatment (Genotropin(®) , Pfizer Inc.) at a dose of 0·035 mg/kg/day by subcutaneous injection, or no treatment. MEASUREMENTS The primary objective was to assess the change from baseline in height standard deviation score (SDS) after 24 months of GH treatment. RESULTS Change from baseline in height SDS was significantly greater in the GH treatment vs control group at both month 12 (1·03 vs 0·14) and month 24 (1·63 vs 0·43; both P < 0·001). Growth velocity SDS was significantly higher in the GH treatment vs control group at 12 months (P < 0·001), but not at 24 months. There was no significant difference in mental or psychomotor development indices between the two groups. CONCLUSIONS GH treatment for 24 months in very young short-stature children born SGA resulted in a significant increase in height SDS compared with no treatment.
Resumo:
Foresters frequently lack sufficient information about thinning intensity effects to optimize semi-natural forest management and their effects and interaction with climate are still poorly understood. In an Abies pinsapo–Pinus pinaster–Pinus sylvestris forest with three thinning intensities, a dendrochronologial approach was used to evaluate the short-term responses of basal area increment (BAI), carbon isotope (δ13C) and water use efficiency (iWUE) to thinning intensity and climate. Thinning generally increased BAI in all species, except for the heavy thinning in P. sylvestris. Across all the plots, thinning increased 13C-derived water-use efficiency on average by 14.49% for A. pinsapo, 9.78% for P. sylvestris and 6.68% for P. pinaster, but through different ecophysiological mechanisms. Our findings provide a robust mean of predicting water use efficiency responses from three coniferous species exposed to different thinning strategies which have been modulated by climatic conditions over time.
Resumo:
Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition. We further discuss the clinical relevance of cell competition in the physiological processes of tissue growth and regeneration, highlighting studies in clinically important disease models, including oncological, neurological, and cardiovascular diseases.
Resumo:
The jumbo flying squid, Dosidicus gigas, support an important squid fishery off the Exclusive Economic Zone of Chilean waters. However, we only have limited information about their biology. In this study, age, growth and population structure of D. gigas were studied using statoliths from 333 specimens (386 females and 147 males) randomly sampled in the Chinese squid jigging surveys from 2007 to 2008 off the Exclusive Economic Zone of Chile. Mantle lengths (MLs) of the sample ranged from 206 to 702 mm, and their ages were estimated from 150 to 307 days for females and from 127 to 302 days for males. At least two spawning groups were identified, the main spawning peak tended to occur between August and November (austral spring group), and the secondary peak appeared during March to June (austral autumn group). The ML-age relationship was best modelled by a linear function for the austral spring group and a power function for the austral autumn group, and the body weight (BW)-age relationship was best described by an exponential function for both the groups. Instantaneous relative growth rates and absolute growth rates for ML and BW did not differ significantly between the two groups. The growth rate of D. gigas tended to be high at young stages, and then decreased after the sub-adult stage (>180 days old). This study suggests large spatial and temporal variability in key life history parameters of D. gigas, calling for the collection of more data with fine spatial and temporal scales to further improve our understanding of the fishery biology of D. gigas.
Resumo:
Prostate cancer is the second leading cause of male cancer-related deaths in the United States. Interestingly, prostate cancer preferentially metastasizes to skeletal tissue. Once in the bone microenvironment, advanced prostate cancer becomes highly resistant to therapeutic modalities. Several factors, such as extracellular matrix (ECM) components, have been implicated in the spread and propagation of prostatic carcinoma. In these studies, we have utilized the PC3 cell line, derived from a human bone metastasis, to investigate the influence of the predominant bone ECM protein, type I collagen, on prostate cancer cell proliferation and gene expression. We have also initiated the design and production of ribozymes to specific gene targets that may influence prostate cancer bone metastasis. ^ Our results demonstrate that PC3 cells rapidly adhere and spread on collagen I to a greater degree than on fibronectin (FN) or poly-L-lysine (PLL). Flow cytometry analysis reveals the presence of the α1, α2 and α3 collagen binding integrin subunits. The use of antibody function blocking studies reveals that PC3 cells can utilize α2β 1 and α3β1 integrins to adhere to collagen I. Once plated on collagen I, the cells exhibit increased rates of proliferation compared with cells plated on FN or tissue culture plastic. Additionally, cells plated on collagen I show increased expression of proteins associated with progression through G1 phase of the cell cycle. Inhibitor studies point to a role for phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and p70 S6 kinase in collagen I-mediated PC3 cell proliferation and cyclin D1 expression. To further characterize the effect of type I collagen on prostate cancer bone metastasis, we utilized a cDNA microarray strategy to monitor type I collagen-mediated changes in gene expression. Results of this analysis revealed a gene expression profile reflecting the increased proliferation occurring on type I collagen. Microarray analysis also revealed differences in the expression of specific gene targets that may impact on prostate cancer metastasis to bone. ^ As a result of our studies on the interaction of prostate cancer cells and the skeletal ECM, we sought to develop novel molecular tools for future gene therapy of functional knockdown experiments. To this end, we developed a series of ribozymes directed against the α2 integrin and at osteopontin, a protein implicated in the metastasis of various cancers, including prostate. These ribozymes should facilitate the future study of the mechanism of prostate cancer cell proliferation, and disease progression occurring at sites of skeletal metastasis where a type I collagen-based environment predominates. ^ Together these studies demonstrate the involvement of bone ECM proteins on prostate cancer cell proliferation and suggest that they may play a significant role on the growth of prostate metastases once in the bone microenvironment. ^
Resumo:
This study examines the effect of the Great Moderation on the relationship between U.S. output growth and its volatility over the period 1947 to 2006. First, we consider the possible effects of structural change in the volatility process. In so doing, we employ GARCH-M and ARCH-M specifications of the process describing output growth rate and its volatility with and without a one-time structural break in volatility. Second, our data analyses and empirical results suggest no significant relationship between the output growth rate and its volatility, favoring the traditional wisdom of dichotomy in macroeconomics. Moreover, the evidence shows that the time-varying variance falls sharply or even disappears once we incorporate a one-time structural break in the unconditional variance of output starting 1982 or 1984. That is, the integrated GARCH effect proves spurious. Finally, a joint test of a trend change and a one-time shift in the volatility process finds that the one-time shift dominates.
Resumo:
Integrins are important as the primary cell adhesion molecule providing information about the extracellular microenvironment to the interior of the cell to influence cellular behavior such as differentiation, proliferation and apoptosis. Apoptotic death due to loss of adhesion is termed anoikis. In this study we have obtained a parental human gastric adenocarcinoma cell line that yielded two variant lines that had differing responses to lack of adhesion. The STAD.APO cell line undergoes apoptosis when denied adherence and the STAD.ARR cell line enters into cell cycle arrest under the identical suspended conditions. We have shown that cyclin A and cyclin D mRNA and protein are down regulated when cells are denied adherence for 24 hours in tissue culture wells previously coated with poly-HEMA. To test whether cyclin A was able to rescue cells from cell cycle arrest and/or anoikis by overriding the cell cycle machinery we transfected the full length cDNA in to each cell type. Surprisingly we found that anoikis and cell cycle arrest due to suspended conditions was not affected by overexpression of cyclin A protein, but that growth under adhered conditions was reduced compared to vector alone control transfectants. Further, we transfected other cell lines; ST7, gastric cancer, MDA-MB-4.35, breast cancer, and HPB T-cell leukemic and in no case were suspended culturing conditions overcome by cyclin A. This result indicates an additional level of regulation for the cell cycle machinery. Additionally, soluble collagen was shown to be able to save from anoikis and also from cell cycle arrest while the β1 specific mAb 33B6 was only able to save from anoikis. Immunofluorescent studies show that soluble collagen creates clusters of β1 with FAK and also β1 with actin in the STAD.ARR cells but does not in the STAD.APO cells. This result indicates that the phenotypes under suspended conditions between these cell lines may diverge at their requirements for integrin ligation. Additionally we characterized the nature of anoikis by showing cytochrome c release, caspase 3, p21 and p53 activation in STAD.APO cells. Thus, our results have implications in the understanding of integrin biology and neoplastic progression. ^
Resumo:
The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^
Resumo:
The purpose of this research is to explore the growth and formation of the head and neck from embryological development through puberty in order to understand how this knowledge is necessary for the development of dental and medical treatments and procedures. This is a necessary aspect of the medical and dental school curriculum at the University of Connecticut Health Center Schools of Medicine and Dental Medicine that needs to be incorporated into the current study of embryology for first-year students. Working with Dr. Christine Niekrash, D.M.D, this paper will cover the embryology and growth of the head, face and oral cavity. The goal of this project will be to organize the information and recognize the resources needed to successfully introduce this part of human physiology to the UConn dental and medical students. One area in which this information is particularly relevant is the facial and oral deformities that can occur throughout fetal development.
Resumo:
India's public sector banks (PSBs) are compared unfavorably with their private sector counterparts, domestic and foreign. This comparison rests, for the most part, on financial measures of performance, and such a comparison provides much of the rationale for privatization of PSBs.In this paper, we attempt a comparison between PSBs and their private sector counterparts based on measures of productivity that use quantities of outputs and inputs. We employ two measures of productivity: Tornqvist and Malmquist total factor productivity growth. We attempt these comparisons over the period 1992-2000, comparing PSBs with both domestic private and foreign banks. Out of a total of four comparisons we have made, there are no differences in three cases, PSBs do better in two, and foreign banks in one. To put it differently, PSBs are seen to be at a disadvantage in only one out of six comparisons. It is difficult, therefore, to sustain the proposition that efficiency and productivity have been lower in public sector banks relative to their peers in the private sector.
Resumo:
Desirable nitrogen (N) management practices for turfgrass supply sufficient N for high quality turf while limiting excess soil N. Previous studies suggested the potential of anion exchange membranes (AEMs) for predicting turfgrass color, quality, or yield. However, these studies suggested a wide range of critical soil nitrate-nitrogen (NO3-N) values across sample dates. A field experiment, in randomized complete block design with treatments consisting of nine N application rates, was conducted on a mixed species cool-season turfgrass lawn across two growing seasons. Every 2 wk from May to October, turfgrass color was assessed with three different reflectance meters, and soil NO3-N was measured with in situ AEMs. Cate-Nelson models were developed comparing relative reflectance value and yield to AEM desorbed soil NO3-N pooled across all sample dates. These models predicted critical AEM soil NO3-N values from 0. 45 to 1.4 micro g cm-2 d-1. Turf had a low probability of further positive response to AEM soil NO3-N greater than these critical values. These results suggest that soil NO3-N critical values from AEMs may be applicable across sample dates and years and may serve to guide N fertilization to limit excess soil NO3-N.
Resumo:
This paper examines cross-country patterns of economic growth by estimating a stochastic frontier production function for 80 developed and developing countries and decomposing output change into factor accumulation, total factor productivity growth, and production efficiency improvement. In addition, this paper incorporates the quality of inputs in analyzing output growth, where the productivity of capital depends on its average age, while the productivity of labor depends on its average level of education. Our growth decomposition involves five geographic regions - Africa, East Asian, Latin America, South Asia, and the West. Factor growth, especially capital accumulation, generally proves much more important than either the improved quality of factors or total factor productivity growth in explaining output growth. The quality of capital positively and significantly affects output growth in all groups. The quality of labor, however, only possesses a positive and significant effect on output growth in Africa, East Asia, and the West. Labor quality owns a negative and significant effect in Latin America and South Asia.