993 resultados para germination uniformity
Resumo:
In this work we attempted to characterize the diaspores and the germination process of Piper aduncum L., as well as to verify the influence of the interaction between presence and absence of light (photoperiod of 12 hours and dark) and temperature (25 °C, 30 °C and 20-30 °C) and also of gibberellin (0, 50, 100, 200 and 400 mg L-1) on the root protrusion and normal seedlings formation. The diaspores are very small with a thousand seed weight of 0.3645 g, 13% moisture and protein reserve. Diaspores are strict positively photoblastic in the tested temperature range and the optimum temperature for root protrusion was 30 °C, while for normal seedlings was 25 °C. The previous permanence in the dark led to an increase in the speed of root protrusion and percentage and speed of seedling formation. The application of gibberellic acid negatively interfered with the protrusion and growth of the radicle while favoring the elongation of hypocotyls.
Resumo:
This study aimed to characterize the reproductive system of Passiflora capsularis L. and P. rubra L. In vivo controlled pollinations, in vitro pollen germination and pollen-ovule (P:O) ratio evaluation were conducted. In self-pollination, intraspecific and interspecific pollination, P. capsularis showed means of 62.5, 68.7 and 48.4% of fertilized flowers, while in P. rubra, the averages were 67.2, 62.5 and 46.9%, respectively. For in vitro germination, 52.2% of P. capsularis pollen grains germinated while in P. rubra, the percentage was 64.4. The P:O ratio was 22.4 for P. capsularis, and 27.4 for P. rubra, which included them in the category of obligatory autogamous. Passiflora capsularis and P. rubra can reproduce both by self-pollination and cross-pollination, and crossings between the two species succeeded though the success rate was lower than 50%. The characteristics of the reproductive system of both species allow the use of greater range of options on breeding methods for production of ornamental Passiflora plants.
Resumo:
Jamun (Syzygium cumini L. Skeels) (Black plum, Damson plum) fruits weigh between 2-5 g at maturity. Fresh seeds represented 20-80% of the total fruit weight; the seed coat and cotyledons contributed 6% and 94% to the total seed weight respectively, while the weight of the embryonic axis was insignificant. Only the embryonic axis stained with Tetrazolium, not the cotyledons. The seeds are polyembryonic with up to four embryos, of which at most three germinate. Decoated seeds germinated faster than coated seeds under nursery conditions, with high significant germination percentages, dry matter production rates and vigor indices. The lack of staining of the cotyledon by tetrazolium was probably due to the presence of an impermeable layer. Decoating seeds for faster germination is recommended.
Resumo:
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Resumo:
Living organisms manage their resources in well evolutionary-preserved manner to grow and reproduce. Plants are no exceptions, beginning from their seed stage they have to perceive environmental conditions to avoid germination at wrong time or rough soil. Under favourable conditions, plants invest photosynthetic end products in cell and organ growth to provide best possible conditions for generation of offspring. Under natural conditions, however, plants are exposed to a multitude of environmental stress factors, including high light and insufficient light, drought and flooding, various bacteria and viruses, herbivores, and other plants that compete for nutrients and light. To survive under environmental challenges, plants have evolved signaling mechanisms that recognise environmental changes and perform fine-tuned actions that maintain cellular homeostasis. Controlled phosphorylation and dephosphorylation of proteins plays an important role in maintaining balanced flow of information within cells. In this study, I examined the role of protein phosphatase 2A (PP2A) on plant growth and acclimation under optimal and stressful conditions. To this aim, I studied gene expression profiles, proteomes and protein interactions, and their impacts on plant health and survival, taking advantage of the model plant Arabidopsis thaliana and the mutant approach. Special emphasis was made on two highly similar PP2A-B regulatory subunits, B’γ and B’ζ. Promoters of B’γ and B’ζ were found to be similarly active in the developing tissues of the plant. In mature leaves, however, the promoter of B’γ was active in patches in leaf periphery, while the activity of B’ζ promoter was evident in leaf edges. The partially overlapping expression patterns, together with computational models of B’γ and B’ζ within trimeric PP2A holoenzymes suggested that B’γ and B’ζ may competitively bind into similar PP2A trimmers and thus influence each other’s actions. Arabidopsis thaliana pp2a-b’γ and pp2a-b’γζ double mutants showed dwarfish phenotypes, indicating that B’γ and B’ζ are needed for appropriate growth regulation under favorable conditions. However, while pp2a-b’γ displayed constitutive immune responses and appearance of premature yellowings on leaves, the pp2a-b’γζ double mutant supressed these yellowings. More detailed analysis of defense responses revealed that B’γ and B’ζ mediate counteracting effects on salicylic acid dependent defense signalling. Associated with this, B’γ and B’ζ were both found to interact in vivo with CALCIUM DEPENDENT PROTEIN KINASE 1 (CPK1), a crucial element of salicylic acid signalling pathway against pathogens in plants. In addition, B’γ was shown to modulate cellular reactive oxygen species (ROS) metabolism by controlling the abundance of ALTERNATIVE OXIDASE 1A and 1D in mitochondria. PP2A B’γ and B’ζ subunits turned out to play crucial roles in the optimization of plant choices during their development. Taken together, PP2A allows fluent responses to environmental changes, maintenance of plant homeostasis, and grant survivability with minimised cost of redirection of resources from growth to defence.
Resumo:
Dissolving cellulose is the first main step in preparing novel cellulosicmaterials. Since cellulosic fibres cannot be easily dissolved in water-based solvents, fibres were pretreated with ethanol-acid solution prior to the dissolution. Solubility and changes on the surface of the fibres were studied with microscopy and capillary viscometry. After the treatment, the cellulose fibres were soluble in alkaline urea-water solvent. The nature of this viscous solution was studied rheologically. Cellulose microspheres were prepared by extruding the alkaline cellulose solution through the needle into an acidic medium. By altering the temperature and acidity of the mediumit was possible to adjust the specific surface area and pore sizes of themicrospheres. A typical skin-core structure was found in all samples. Microspheres were oxidised in order to introduce anionic carboxylic acid groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake increased 25 times after oxidation and they could swell almost to their original state (88%) after drying and shrinking. Swelling was studied in simulated physiological environments, corresponding to stomach acid and intestines (pH 1.2-7.4). Oxidised microspheres were used as a drug carriers. They demonstrated a highmass uniformity, which would enable their use for personalised dosing among different patients, including children. The drug was solidified in microspheres in amorphous form. This enhanced solubility and could be used for more challenging drugs with poor solubility. The pores of themicrospheres also remained open after the drug was loaded and they were dried. Regardless of the swelling, the drug was released at a constant rate in all environments.
Resumo:
Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.
Resumo:
The Banff classification was introduced to achieve uniformity in the assessment of renal allograft biopsies. The primary aim of this study was to evaluate the impact of specimen adequacy on the Banff classification. All renal allograft biopsies obtained between July 2010 and June 2012 for suspicion of acute rejection were included. Pre-biopsy clinical data on suspected diagnosis and time from renal transplantation were provided to a nephropathologist who was blinded to the original pathological report. Second pathological readings were compared with the original to assess agreement stratified by specimen adequacy. Cohen's kappa test and Fisher's exact test were used for statistical analyses. Forty-nine specimens were reviewed. Among these specimens, 81.6% were classified as adequate, 6.12% as minimal, and 12.24% as unsatisfactory. The agreement analysis among the first and second readings revealed a kappa value of 0.97. Full agreement between readings was found in 75% of the adequate specimens, 66.7 and 50% for minimal and unsatisfactory specimens, respectively. There was no agreement between readings in 5% of the adequate specimens and 16.7% of the unsatisfactory specimens. For the entire sample full agreement was found in 71.4%, partial agreement in 20.4% and no agreement in 8.2% of the specimens. Statistical analysis using Fisher's exact test yielded a P value above 0.25 showing that - probably due to small sample size - the results were not statistically significant. Specimen adequacy may be a determinant of a diagnostic agreement in renal allograft specimen assessment. While additional studies including larger case numbers are required to further delineate the impact of specimen adequacy on the reliability of histopathological assessments, specimen quality must be considered during clinical decision making while dealing with biopsy reports based on minimal or unsatisfactory specimens.
Resumo:
The liberalisation of the wholesale electricity markets has been considered an efficient way to organise the markets. In Europe, the target is to liberalise and integrate the common European electricity markets. However, insufficient transmission capacity between the market areas hampers the integration, and therefore, new investments are required. Again, massive transmission capacity investments are not usually easy to carry through. This doctoral dissertation aims at elaborating on critical determinants required to deliver the necessary transmission capacity investments. The Nordic electricity market is used as an illustrative example. This study suggests that changes in the governance structure have affected the delivery of Nordic cross-border investments. In addition, the impacts of not fully delivered investments are studied in this doctoral dissertation. An insufficient transmission network can degrade the market uniformity and may also cause a need to split the market into smaller submarkets. This may have financial impacts on market actors when the targeted efficient sharing of resources is not met and even encourage gaming. The research methods applied in this doctoral dissertation are mainly empirical ranging from a Delphi study to case studies and numerical calculations.
Resumo:
Origanum vulgare L. essential oil has been known as an interesting source of antimicrobial compounds to be applied in food conservation. In this study, the effect of O. vulgare essential on the growth of A. flavus, A. parasiticus, A. fumigatus, A. terreus and A. ochraceus was assessed. The essential oil had a significant inhibitory effect on all assayed fungi. MIC was 0.6 µL.mL-1 for all fungi, while MFC was in the range of 1.25-2.5 µL.mL-1. The radial mycelial growth of A. flavus and A. parasiticus was strongly inhibited over 14 days at 0.6, 1.25 and 2.5 µL.mL-1 of oil in solid medium. The mycelial mass of all fungi was inhibited over 90% at 0.6 and 0.3 µL.mL-1 in liquid medium, while it was 100% at 1.25 µL.mL-1. The oil in a range of concentrations (0.6 to 2.5 µL.mL-1) was effective in inhibiting the viability and spores germination in a short time of exposure. The main morphological changes caused by the essential oil in A. parasiticus observed under light microscopy were absence of conidiation, leakage of cytoplasm, loss of pigmentation, and disrupted cell structure. These results demonstrated that O. vulgare essential oil produced a significant fungitoxic effect supporting its possible rational use as anti-mould compound in food conservation.
Resumo:
This study analyzed the drying process and the seed quality of adzuki beans (Vigna angularis). Grains of adzuki beans, with moisture content of 1.14 (decimal dry basis) at harvest and dried until the moisture content of 0.11 (decimal dry basis.) were used. Drying was done in an experimental drier maintened at controlled temperatures of 30, 40, 50, 60, and 70 ºC and relative humidity of 52.0, 28.0, 19.1, 13.1, and 6.8%, respectively. Physiological and technological seed quality was evaluated using the germination test, Index of Germination Velocity (IGV), electrical conductivity, and water absorption, respectively. Under the conditions tested in the present study, it can be concluded that drying time for adzuki beans decreases with the higher air temperatures of 60 and 70 ºC, and it affected the physiological and technological seed quality. Thus, to avoid compromising adzuki seeds quality, it is recommended to promote its drying up to 50 ºC.
Resumo:
The aim of this study was to incorporate astaxanthin to yogurts with different fat content to match apricot (Prunus armeniaca L.) color. The samples containing astaxanthin were stored at 5 ± 3 °C, and color stability and astaxanthin content were determined by colorimetry and high performance liquid chromatography (HPLC), respectively. Yogurt samples were analyzed in triplicate every 24 hours for one week and subsequently every week for 3 more weeks There were no significant differences (p < 0.05) between astaxanthin concentration values at 0 and 28 days for both samples; therefore, it can be said that the fat content in the yogurt had not effect on the stability of pigment. The low dispersion of the data showed uniformity in the three chromaticity coordinates L*, a*, b* throughout the storage period for both types of yogurt. Values of ∆E ≥ 5.0 were not obtained at any time during storage, indicating high stability of the pigment.
Resumo:
Abstract Essential oils (EO) of eucalyptus (Eucalyptus globulus L.), thymus (Thymus capitatus L.) pirul (Schinus molle L.) were evaluated for their efficacy to control Aspergillus parasiticus and Fusarium moniliforme growth and their ability to produce mycotoxins. Data from kinetics radial growth was used to obtain the half maximal inhibitory concentration (IC50). The IC50 was used to evaluate spore germination kinetic and mycotoxin production. Also, spore viability was evaluated by the MTT assay. All EO had an effect on the radial growth of both species. After 96 h of incubation, thymus EO at concentrations of 1000 and 2500 µL L–1 totally inhibited the growth of F. moniliforme and A. parasiticus, respectively. Eucalyptus and thymus EO significantly reduced spore germination of A. parasiticus. Inhibition of spore germination of F. moniliforme was 84.6, 34.0, and 30.6% when exposed to eucalyptus, pirul, and thymus EO, respectively. Thymus and eucalyptus EO reduced aflatoxin (4%) and fumonisin (31%) production, respectively. Spore viability was affected when oils concentration increased, being the thymus EO the one that reduced proliferation of both fungi. Our findings suggest that EO affect F. moniliforme and A. parasiticus development and mycotoxin production.
Resumo:
Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber content also increased in all grains during germination where the insoluble dietary fiber fractions were always found in higher proportions to soluble dietary fiber fractions. Our results also confirmed that germinated mung bean is a rich source of GABA and dietary fibers. Microwave cooking resulted in the smallest loss of GABA in mung bean and sesame, while steaming led to the least GABA content loss in soybean and black bean. Therefore microwave cooking and steaming are the most recommended cooking processes to preserve GABA in germinated legumes and sesame.
Resumo:
Sunflower crop was based, as yet, on high linoleic cultivars, but in the last years request for oil with higher content of oleic acid has increased, due to their dietary characteristics. At the beginning, high oleic cultivars were used to be sown in warm regions, but then the concern about growing it in temperate areas, as the south-east of Buenos Aires Province, was posed. In this region, early sowings are recommended, so that grain filling matches with a period of appropriate hydric and light conditions, as to result in greater yields. However, early sowings are limited by low soil temperature, that delays seedling emergence, resulting in heterogeneous stand establishment. The aim of this work was to evaluate seed performance of four high oleic cultivars in the southern area of Buenos Aires Province, by means of vigor tests and field trials. Germination, cold, tetrazolium viability, tetrazolium viability with cold, accelerated ageing tests and three field sowings at different soil temperatures were performed. Data were analyzed by Anova using generalised linear models, and tests and cultivars were contrasted among themselves. Similar seedling emergence under optimal and suboptimal temperatures for high oleic and high linoleic cultivars was recorded. The success of seedling establishment does not appear to be related to the acidic composition of seeds.