955 resultados para genetics and DNA sequencing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The treatment of lupus nephritis is still an unmet medical need requiring new therapeutic approaches. Our group found recently that irinotecan, an inhibitor of topoisomerase I (topo I), reversed proteinuria and prolonged survival in mice with advanced lupus nephritis. While irinotecan is known to stabilize the complex of topo I and DNA, the enzyme tyrosyl-DNA phosphodiesterase 1 (TDP-1) functions in an opposing manner by releasing topo I from DNA. Therefore, we undertook this study to test whether the TDP-1 inhibitor furamidine has an additional effect on lupus nephritis when used in combination with irinotecan. METHODS NZB/NZW mice were treated with low-dose irinotecan and furamidine either alone or in combination beginning at age 26 weeks. DNA relaxation was visualized using gel electrophoresis. Binding of anti-double-stranded DNA (anti-dsDNA) antibodies to DNA modified by topo I, TDP-1, and the topo I inhibitor camptothecin was determined by enzyme-linked immunosorbent assay. RESULTS Compared to treatment with either agent alone, simultaneous treatment with low-dose irinotecan and furamidine significantly improved survival of NZB/NZW mice. Similar to what has been previously shown for irinotecan alone, the combination treatment did not change the levels of anti-dsDNA antibodies. In vitro, recombinant TDP-1 increased topo I-mediated DNA relaxation, resulting in enhanced binding of anti-dsDNA antibodies. In combination with topo I and camptothecin, TDP-1 reversed the inhibitory effects of camptothecin on DNA relaxation and anti-dsDNA binding. CONCLUSION Affecting DNA relaxation by the enzymes topo I and TDP-1 and their inhibitors may be a promising approach for the development of new targeted therapies for systemic lupus erythematosus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Few data on the virological determinants of hepatitis B virus (HBV) infection are available from southern Africa. METHODS We enrolled consecutive HIV-infected adult patients initiating antiretroviral therapy (ART) at two urban clinics in Zambia and four rural clinics in Northern Mozambique between May 2013 and August 2014. HBsAg screening was performed using the Determine® rapid test. Quantitative real-time PCR and HBV sequencing were performed in HBsAg-positive patients. Risk factors for HBV infection were evaluated using Chi-square and Mann-Whitney tests and associations between baseline characteristics and high level HBV replication explored in multivariable logistic regression. RESULTS Seventy-eight of 1,032 participants in Mozambique (7.6%, 95% confidence interval [CI]: 6.1-9.3) and 90 of 797 in Zambia (11.3%, 95% CI: 9.3-13.4) were HBsAg-positive. HBsAg-positive individuals were less likely to be female compared to HBsAg-negative ones (52.3% vs. 66.1%, p<0.001). Among 156 (92.9%) HBsAg-positive patients with an available measurement, median HBV viral load was 13,645 IU/mL (interquartile range: 192-8,617,488 IU/mL) and 77 (49.4%) had high values (>20,000 UI/mL). HBsAg-positive individuals had higher levels of ALT and AST compared to HBsAg-negative ones (both p<0.001). In multivariable analyses, male sex (adjusted odds ratio: 2.59, 95% CI: 1.22-5.53) and CD4 cell count below 200/μl (2.58, 1.20-5.54) were associated with high HBV DNA. HBV genotypes A1 (58.8%) and E (38.2%) were most prevalent. Four patients had probable resistance to lamivudine and/or entecavir. CONCLUSION One half of HBsAg-positive patients demonstrated high HBV viremia, supporting the early initiation of tenofovir-containing ART in HIV/HBV-coinfected adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA breakage effect of the anticancer agent 3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzoquinone (AZQ, NSC-182986) on bacteriophage PM2 DNA was investigated using agarose gel electrophoresis. AZQ caused both single-stranded and double-stranded breaks after reduction with NaBH(,4), but it was not active in the native state. At 120 (mu)M, it degraded 50% of the closed circular form I DNA into 40% form II DNA (single-stranded break) and 10% form III DNA (double-stranded break). It produced a dose-response breakage between 1 (mu)M and 320 (mu)M. The DNA breakage exhibited a marked pH dependency. At 320 (mu)M, AZQ degraded 80% and 60% of form I DNA at pH 4 and 10 respectively, but none between pH 6 to 8. The DNA breakage at physiologic pH was greatly enhanced when 10 (mu)M cupric sulfate was included in the incubation mixture. The DNA strand scission was inhibited by catalase, glutathione, KI, histidine, Tiron, and DABCO. These results suggest that the DNA breakage may be caused by active oxygen metabolites including hydroxyl free radical. The bifunctional cross-linking activity of reduced AZQ on isolated calf thymus DNA was investigated by ethidium fluorescence assay. The cross-linking activity exhibited a similar pH dependency; highest in acidic and alkaline pH, inactive under neutral conditions. Using the alkaline elution method, we found that AZQ induced DNA single-stranded breaks in Chinese hamster ovary cells treated with 50 (mu)M of AZQ for 2 hr. The single-stranded break frequencies in rad equivalents were 17 with 50 (mu)M and 140 with 100 (mu)M of AZQ. In comparison, DNA cross-links appeared in cells treated with only 1 to 25 (mu)M of AZQ for 2 hr. The cross-linking frequencies in rad equivalents were 39 and 90 for 1 and 5 (mu)M of AZQ, respectively. Both DNA-DNA and DNa-protein cross-links were induced by AZQ in CHO cells as revealed by the proteinas K digestion assay. DNA cross-links increased within the first 4 hr of incubation in drug-free medium and slightly decreased by 12 hr, and most of the cross-links disappeared after cells were allowed to recovered for 24 hr.^ By electrochemical analysis, we found that AZQ was more readily reduced at acidic pH. However, incubation of AZQ with NaBH(,4) at pH 7.8 or 10, but not at 4, produced superoxide anion. The opening of the aziridinyl rings of AZQ at pH 4 was faster in the presence of NaBH(,4) than in its absence; no ring-opening was detected at pH 7.8 regardless of the inclusion of NaBH(,4). . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a genetically heterogeneous group of retinal degenerations that affects over one million people worldwide. To date, 11 autosomal dominant, 13 autosomal recessive, and 5 X-linked forms of retinitis pigmentosa have been identified through linkage analysis, but the disease-causing genes and mutations have been found for only half of these loci. My research uses a positional candidate cloning approach to identify the gene and mutations responsible for one type of autosomal dominant retinitis pigmentosa, RP10. The premise is that identifying the genes and mutations responsible for disease will provide insight into disease mechanisms and provide treatment options. Previous research mapped the RP10 locus to a 5cM region on chromosome 7q31 between markers D7S686 and D7S530. Linkage and fine-point haplotype analysis was used to reduce and refine the RP10 disease interval to a 4cM region located between D7S2471 and a new marker located 45,000bp telomeric of D7S461. In order to identify genes located in the RP10 interval, an extensive EST map was created of this region. Five EST clusters from this map were analyzed to determine if mutations in these genes cause the RP10 form of retinitis pigmentosa. The genomic structure of a known metabotrophic glutamate receptor, GRMS8, was determined first. DNA sequencing of GRM8 in RP10 family members did not identify any disease-causing mutations. Four other EST clusters (A170, A173, A189, and A258) were characterized and determined to be part of the same gene, UBNL1 (ubinuclein-like 1). The full-length mRNA sequence and genomic structure of UBNL1 was determined and then screened in patients. No disease-causing mutations were identified in any of the RP10 family members tested. Recent data made available with the release of the public and Celera genome assemblies indicates that UBNL1 is outside of the RP10 disease region. Despite this complication, characterization of UBNL1 is still important in the understanding of normal visual processes and it is possible that mutations in UBNL1 could cause other forms of retinopathy. The EST map and list of RP10 candidates will continue to aid others in the search for the RP10 gene and mutations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP-dependent chromatin remodeling has been shown to be critical for transcription and DNA repair. However, the involvement of ATP-dependent chromatin remodeling in DNA replication remains poorly defined. Interestingly, we found that the INO80 chromatin-remodeling complex is directly involved in the DNA damage tolerance pathways activated during DNA replication. DNA damage tolerance is important for genomic stability and is controlled by formation of either mono-ubiquitinated or multi-ubiquitinated PCNA, which respectively induce error prone or error-free replication bypass of the lesions. In addition, homologous recombination (HR) mediated by the Rad51 pathway is also involved in the DNA damage tolerance pathways. ^ We found that INO80 is specifically recruited to replication origins during S phase in a genome-wide fashion. In addition, DNA combing analysis shows INO80 is required for the resumption of replication at stalled forks induced by methyl methane-sulfonate (MMS). Mechanistically, we find that INO80 is required for PCNA ubiquitination as well as for Rad51 mediated processing of replication forks after MMS treatment. Furthermore, chromatin immunoprecipitation at specific ARSs indicates INO80 is necessary for Rad18 and Rad51 recruitment to replication forks after MMS treatment. Moreover, 2D gel analysis shows INO80 is necessary to process Rad51 mediated intermediates at impeded replication forks. ^ In conclusion, our findings establish a novel role of a chromatin-remodeling complex in DNA damage tolerance pathways and suggest that chromatin remodeling is fundamentally important to ensure faithful replication of DNA and genome stability in eukaryotes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the biological functions and the regulation of expression of DNA ligase I by studying its expression under different conditions.^ The gene expression of DNA ligase I was induced two- to four-fold in S-phase lymphoblastoid cells but was decreased to 15% of control after administration of a DNA damaging agent, 4-nitroquinoline-1-oxide. When cells were induced into differentiation, the expression level of DNA ligase I was decreased to less than 15% of that of the control cells. When the gene of DNA ligase I was examined for tissue specific expression in adult rats, high levels of DNA ligase I mRNA were observed in testis (8-fold), intermediate levels in ovary and brain (4-fold), and low levels were found in intestine, spleen, and liver (1- to 2-fold).^ In confluent cells of normal skin fibroblasts, UV irradiation induced the gene expression of DNA ligase I at 24 and 48 h. The induction of DNA ligase I gene expression requires active p53 protein. Introducing a vector containing the wild type p53 protein in the cells caused an induction of the DNA ligase I protein 24 h after the treatment.^ Our results indicate that, in addition to the regulation by phosphorylation/dephosphorylation, cellular DNA ligase I activity can be regulated at the gene transcription level, and the p53 tumor suppresser is one of the transcription factors for the DNA ligase I gene. Also, our results suggest that DNA ligase I is involved in DNA repair as well as in DNA replication.^ Also, as an early attempt to clone the human homolog of the yeast CDC9 gene which has been shown to be involved in DNA replication, DNA repair, and DNA recombination, we have identified a human gene with mRNA of 1.7 kb. This dissertation studies the gene regulation and the possible biological functions of this new human gene by examining its expression at different stages of the cell cycle, during cell differentiation, and in cellular response to DNA damage.^ The new gene that we recently identified from human cells is highly expressed in brain and reproductive organs (BRE). This BRE gene encodes an mRNA of 1.7-1.9 kb, with an open reading frame of 1,149 bp, and gives rise to a deduced polypeptide of 383 amino acid residues. No extensive homology was found between BRE and sequences from the EMBL-Gene Banks. BRE showed tissue-specific expression in adult rats. The steady state mRNA levels were high in testis (5-6 fold), ovary and brain (3-4 fold) compared to the spleen level, but low in intestine and liver (1-2 fold). The expression of this gene is responsive to DNA damage and/or retinoic acid (RA) treatment. Treatment of fibroblast cells with UV irradiation and 4-nitroquinoline-1-oxide caused more than 90% and 50% decreases in BRE mRNA, respectively. Similar decreases in BRE expression were observed after treatment of the brain glioma cell line U-251 and the promyelocytic cell line HL-60 with retinoic acid. (Abstract shortened by UMI). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At issue is whether or not isolated DNA is patent eligible under the U.S. Patent Law and the implications of that determination on public health. The U.S. Patent and Trademark Office has issued patents on DNA since the 1980s, and scientists and researchers have proceeded under that milieu since that time. Today, genetic research and testing related to the human breast cancer genes BRCA1 and BRCA2 is conducted within the framework of seven patents that were issued to Myriad Genetics and the University of Utah Research Foundation between 1997 and 2000. In 2009, suit was filed on behalf of multiple researchers, professional associations and others to invalidate fifteen of the claims underlying those patents. The Court of Appeals for the Federal Circuit, which hears patent cases, has invalidated claims for analyzing and comparing isolated DNA but has upheld claims to isolated DNA. The specific issue of whether isolated DNA is patent eligible is now before the Supreme Court, which is expected to decide the case by year's end. In this work, a systematic review was performed to determine the effects of DNA patents on various stakeholders and, ultimately, on public health; and to provide a legal analysis of the patent eligibility of isolated DNA and the likely outcome of the Supreme Court's decision. ^ A literature review was conducted to: first, identify principle stakeholders with an interest in patent eligibility of the isolated DNA sequences BRCA1 and BRCA2; and second, determine the effect of the case on those stakeholders. Published reports that addressed gene patents, the Myriad litigation, and implications of gene patents on stakeholders were included. Next, an in-depth legal analysis of the patent eligibility of isolated DNA and methods for analyzing it was performed pursuant to accepted methods of legal research and analysis based on legal briefs, federal law and jurisprudence, scholarly works and standard practice legal analysis. ^ Biotechnology, biomedical and clinical research, access to health care, and personalized medicine were identified as the principle stakeholders and interests herein. Many experts believe that the patent eligibility of isolated DNA will not greatly affect the biotechnology industry insofar as genetic testing is concerned; unlike for therapeutics, genetic testing does not require tremendous resources or lead time. The actual impact on biomedical researchers is uncertain, with greater impact expected for researchers whose work is intended for commercial purposes (versus basic science). The impact on access to health care has been surprisingly difficult to assess; while invalidating gene patents might be expected to decrease the cost of genetic testing and improve access to more laboratories and physicians' offices that provide the test, a 2010 study on the actual impact was inconclusive. As for personalized medicine, many experts believe that the availability of personalized medicine is ultimately a public policy issue for Congress, not the courts. ^ Based on the legal analysis performed in this work, this writer believes the Supreme Court is likely to invalidate patents on isolated DNA whose sequences are found in nature, because these gene sequences are a basic tool of scientific and technologic work and patents on isolated DNA would unduly inhibit their future use. Patents on complementary DNA (cDNA) are expected to stand, however, based on the human intervention required to craft cDNA and the product's distinction from the DNA found in nature. ^ In the end, the solution as to how to address gene patents may lie not in jurisprudence but in a fundamental change in business practices to provide expanded licenses to better address the interests of the several stakeholders. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 tumor suppressor protein plays a major role in cellular responses to anticancer agents that target DNA. DNA damage triggers the accumulation of p53, resulting in the transactivation of genes, which induce cell cycle arrest to allow for repair of the damaged DNA, or signal apoptosis. The exact role that p53 plays in sensing DNA damage and the functional consequences remain to be investigated. The main goal of this project was to determine if p53 is directly involved in sensing DNA damage induced by anticancer agents and in mediating down-stream cellular responses. This was tested in two experimental models of DNA damage: (1) DNA strand termination caused by anticancer nucleoside analogs and (2) oxidative DNA damage induced by reactive oxygen species (ROS). Mobility shift assays demonstrated that p53 and DNA-PK/Ku form a complex that binds DNA containing the anticancer nucleoside analog gemcitabine monophosphate in vitro. Binding of the p53-DNA-PK/Ku complex to the analog-containing DNA inhibited DNA strand elongation. Furthermore, treatment of cells with gemcitabine resulted in the induction of apoptosis, which was associated with the accumulation of p53 protein, its phosphorylation, and nuclear localization, suggesting the activation of p53 to trigger apoptosis following gemcitabine induced DNA strand termination. The role of p53 as a DNA damage sensor was further demonstrated in response to oxidative DNA damage. Protein pull-down assays demonstrated that p53 complexes with OGG1 and APE, and binds DNA containing the oxidized DNA base 8-oxoG. Importantly, p53 enhances the activities of APE and OGG1 in excising the 8-oxoG residue as shown by functional assays in vitro. This correlated with the more rapid removal of 8-oxoG from DNA in intact cells with wild-type p53 exposed to exogenous ROS stress. Interestingly, persistent exposure to ROS resulted in the accelerated onset of apoptosis in cells with wild-type p53 when compared to isogenic cells lacking p53. Apoptosis in p53+/+ cells was associated with accumulation and phosphorylation of p53 and its nuclear localization. Taken together, these results indicate that p53 plays a key role in sensing DNA damage induced by anticancer nucleoside analogs and ROS, and in triggering down-stream apoptotic responses. This study provides new mechanistic insights into the functions of p53 in cellular responses to anticancer agents. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two modal size groups of sexually mature Arctic charr (Salvelinus alpinus) differing in shape and found at different depths in Lake Aigneau in the Canadian sub-Arctic are described and tested for genetic and ecological differentiation. Forms consisted of a small littoral resident, mean size 21.7 cm, and a large profundal resident, mean size 53.9 cm. Mitochondrial DNA analysis indicated that seven of eight haplotypes were diagnostic for either the littoral or profundal fish, with 66.6% of the variation being found within form groupings. Pairwise tests of microsatellite data indicated significant differences in nine of 12 loci and a significant difference between the forms across all tested loci. Molecular variation was partitioned to 84.1% within and 15.9% between forms and suggestive of either restricted interbreeding over time or different allopatric origins. Stable isotope signatures were also significantly different, with the profundal fish having higher d13C and d15N values than the littoral fish. Overlap and separation, respectively, in the range of form d13C and d15N signatures indicated that carbon was obtained from similar sources, but that forms fed at different trophic levels. Littoral fish relied on aquatic insects, predominantly chironomids. Profundal fish were largely piscivorous, including cannibalism. Predominantly empty stomachs and low per cent nitrogen muscle-tissue composition among profundal fish further indicated that the feeding activity was limited to the winter when ice-cover increases the density of available prey at depth. Results provide evidence of significant differences between the modal groups, with origins in both genetics and ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European chestnut (Castanea sativa Mill.) is a multipurpose species that has been widely cultivated around the Mediterranean basin since ancient times. New varieties were brought to the Iberian Peninsula during the Roman Empire, which coexist since then with native populations that survived the last glaciation. The relevance of chestnut cultivation has being steadily growing since the Middle Ages, until the rural decline of the past century put a stop to this trend. Forest fires and diseases were also major factors. Chestnut cultivation is gaining momentum again due to its economic (wood, fruits) and ecologic relevance, and represents currently an important asset in many rural areas of Europe. In this Thesis we apply different molecular tools to help improve current management strategies. For this study we have chosen El Bierzo (Castile and Leon, NW Spain), which has a centenary tradition of chestnut cultivation and management, and also presents several unique features from a genetic perspective (next paragraph). Moreover, its nuts are widely appreciated in Spain and abroad for their organoleptic properties. We have focused our experimental work on two major problems faced by breeders and the industry: the lack of a fine-grained genetic characterization and the need for new strategies to control blight disease. To characterize with sufficient detail the genetic diversity and structure of El Bierzo orchards, we analyzed DNA from 169 trees grafted for nut production covering the entire region. We also analyzed 62 nuts from all traditional varieties. El Bierzo constitutes an outstanding scenario to study chestnut genetics and the influence of human management because: (i) it is located at one extreme of the distribution area; (ii) it is a major glacial refuge for the native species; (iii) it has a long tradition of human management (since Roman times, at least); and (iv) its geographical setting ensures an unusual degree of genetic isolation. Thirteen microsatellite markers provided enough informativeness and discrimination power to genotype at the individual level. Together with an unexpected level of genetic variability, we found evidence of genetic structure, with three major gene pools giving rise to the current population. High levels of genetic differentiation between groups supported this organization. Interestingly, genetic structure does not match with spatial boundaries, suggesting that the exchange of material and cultivation practices have strongly influenced natural gene flow. The microsatellite markers selected for this study were also used to classify a set of 62 samples belonging to all traditional varieties. We identified several cases of synonymies and homonymies, evidencing the need to substitute traditional classification systems with new tools for genetic profiling. Management and conservation strategies should also benefit from these tools. The avenue of high-throughput sequencing technologies, combined with the development of bioinformatics tools, have paved the way to study transcriptomes without the need for a reference genome. We took advantage of RNA sequencing and de novo assembly tools to determine the transcriptional landscape of chestnut in response to blight disease. In addition, we have selected a set of candidate genes with high potential for developing resistant varieties via genetic engineering. Our results evidenced a deep transcriptional reprogramming upon fungal infection. The plant hormones ET and JA appear to orchestrate the defensive response. Interestingly, our results also suggest a role for auxins in modulating such response. Many transcription factors were identified in this work that interact with promoters of genes involved in disease resistance. Among these genes, we have conducted a functional characterization of a two major thaumatin-like proteins (TLP) that belongs to the PR5 family. Two genes encoding chestnut cotyledon TLPs have been previously characterized, termed CsTL1 and CsTL2. We substantiate here their protective role against blight disease for the first time, including in silico, in vitro and in vivo evidence. The synergy between TLPs and other antifungal proteins, particularly endo-p-1,3-glucanases, bolsters their interest for future control strategies based on biotechnological approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing demand for sustainable animal production is compelling researchers to explore the potential approaches to reduce emissions of greenhouse gases from livestock that are mainly produced by enteric fermentation. Some potential solutions, for instance, the use of chemical inhibitors to reduce methanogenesis, are not feasible in routine use due to their toxicity to ruminants, inhibition of efficient rumen function or other transitory effects. Strategies, such as use of plant secondary metabolites and dietary manipulations have emerged to reduce the methane emission, but these still require extensive research before these can be recommended and deployed in the livestock industry sector. Furthermore, immunization vaccines for methanogens and phages are also under investigation for mitigation of enteric methanogenesis. The increasing knowledge of methanogenic diversity in rumen, DNA sequencing technologies and bioinformatics have paved the way for chemogenomic strategies by targeting methane producers. Chemogenomics will help in finding target enzymes and proteins, which will further assist in the screening of natural as well chemical inhibitors. The construction of a methanogenic gene catalogue through these approaches is an attainable objective. This will lead to understand the microbiome function, its relation with the host and feeds, and therefore, will form the basis of practically viable and eco-friendly methane mitigation approaches, while improving the ruminant productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.