966 resultados para frontier efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review literature on several types of energy efficiency policies: appliance standards, financial incentive programs, information and voluntary programs, and management of government energy use. For each, we provide a brief synopsis of the relevant programs, along with available existing estimates of energy savings, costs, and cost-effectiveness at a national level. The literature examining these estimates points to potential issues in determining the energy savings and costs, but recent evidence suggests that techniques for measuring both have improved. Taken together, the literature identifies up to four quads of energy savings annually from these programs - at least half of which is attributable to appliance standards and utility-based demand-side management, with possible additional energy savings from the U.S. Department of Energy's (DOE's) ENERGY STAR, Climate Challenge, and Section 1605b voluntary programs to reduce carbon dioxide (CO 2) emissions. Related reductions in CO 2 and criteria air pollutants may contribute an additional 10% to the value of energy savings above the price of energy itself. Copyright © 2006 by Annual Reviews. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar cell relies on its ability to turn photons into current. Because short wavelength photons are typically absorbed near the top surface of a cell, the generated charge carriers recombine before being collected. But when a layer of quantum dots (nanoscale semiconductor particles) is placed on top of the cell, it absorbs short wavelength photons and emits them into the cell at longer wavelengths, which enables more efficient carrier collection. However, the resulting power conversion efficiency of the system depends critically on the quantum dot luminescence efficiency – the nature of this relationship was previously unknown. Our calculations suggest that a quantum dot layer must have high luminescence efficiency (at least 80%) to improve the current output of existing photovoltaic (PV) cells; otherwise, it may worsen the cell’s efficiency. Our quantum dot layer (using quantum dots with over 85% quantum yield) slightly reduced the efficiency of our PV cells. We observed a decrease in short circuit current of a commercial-grade cell from 0.1977 A to 0.1826 A, a 7.6% drop, suggesting that improved optical coupling from the quantum dot emission into the solar cell is needed. With better optical coupling, we predict current enhancements between ~6% and ~8% for a solar cell that already has an antireflection coating. Such improvements could have important commercial impacts if the coating could be deployed in a scalable fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This survey on calorimetry and thermodynamics of anoxibiosis applies classical and irreversible thermodynamics to interpret experimental, direct calorimetric results in order to elucidate the sequential activation of various biochemical pathways. First, the concept of direct and indirect calorimetry is expanded to incorporate the thermochemistry of aerobic and anoxic metabolism in living cells and organisms. Calorimetric studies done under normoxia as well as under physiological and environmental anoxia are presented and assessed in terms of ATP turnover rate. Present evidence suggests that unknown sources of energy in freshwater and marine invertebrates under long-term anoxia may be important. During physiological hypoxia, thermodynamically grossly inefficient pathways sustain high metabolic rates for brief periods. On the contrary, under long-term environmental anoxia, low steady-state heat dissipation is linked to the more efficient succinate, propionate, and acetate pathways. In the second part of this paper these relationships are discussed in the context of linear, irreversible thermodynamics. The calorimetric and biochemical trends during aerobic-anoxic transitions are consistent with thermodynamic optimum functions of catabolic pathways. The theory predicts a decrease of rate with an increase of thermodynamic efficiency; therefore maximum rate and maximum efficiency are mutually exclusive. Cellular changes of pH and adenylate phosphorylation potential are recognized as regulatory mechanisms in the energetic switching to propionate production. While enzyme kinetics provides one key for understanding metabolic regulation, our insight remains incomplete without a complementary thermodynamic analysis of kinetic control in energetically coupled pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seger has argued that, if a law of diminishing returns of personal fitness with increasing consumption of a limiting resource applies, a greater increment to inclusive fitness3 may accrue to an individual by sharing the resource with its relatives than by excluding them. That is, from the point of view of an individual's inclusive fitness, there will exist an optimal relation between resource abundance, conversion efficiency (in terms of increment in personal fitness per resource unit consumed) and competitor abundance and relatedness to the subject. Here, this is rendered more concrete by deriving expressions for the optimum consumption rate for any one of a number of related individuals competing for a finite resource.