974 resultados para freezing and infralimbic cortex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical activity associated with voluntary movement is shifted from medial to lateral premotor areas in Parkinson's disease. This occurs bilaterally, even for unilateral movements. We have used both EEG and MEG to further investigate medial and lateral premotor activity in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. The CNV, recorded from 21 scalp positions in a Go/NoGo task, was maximal over central medial regions in control subjects. For hemi-Parkinson's disease subjects, activity was shifted more frontally, reduced in the midline and lateralised towards the side of greatest basal ganglia impairment. With 143 channel whole-scalp magneto encephalography (MEG) we are further examining asymmetries in supplementary motor/premotor cortical activity prior to self-paced voluntary movement. In preliminary results, one hemi-Parkinson's disease patient with predominantly left-side symptoms showed strong medial activity consistent with a dominant source in the left supplementary motor area (SMA). Three patients showed little medial activity, but early bilateral sources within lateral premotor cortex. Results suggest greater involvement of lateral premotor rather than the SMA prior to movement in Parkinson's disease and provide evidence for asymmetric function of the SMA in hemi- Parkinson's disease, with reduced activity on the side of greatest basal ganglia deficit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the primary personality dimensions or traits that has consistently been linked to substance abuse is impulsivity. However, impulsivity is not a homogenous construct and although many of the measures of impulsivity are correlated, the most recent review of published factor analytic studies has proposed two independent dimensions of impulsivity: reward sensitivity, reflecting one of the primary dimension of J. A. Gray's personality theory, and rash impulsiveness. These two facets of impulsivity derived from the field of personality research parallel recent developments in the neurosciences where changes in the incentive value of rewarding substances has been linked to alterations in neural substrates involved in reward seeking and with a diminished capacity to inhibit behavior due to chronic drug exposure. In this paper, we propose a model that integrates the findings from research into individual differences with recent models of neural substrates implicated in the development of substance misuse. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sprague Dawley rats were submitted to bilateral ventral hippocampus lesions 7 days after birth. This corresponds to the Lipska and Weinberger`s procedure for modeling schizophrenia. The aim of the present work was to test the learning capacity of such rats with an associative Pavlovian and an instrumental learning paradigm, both methods using reward outcome (food, sucrose or polycose). The associative paradigm comprised also a second learning test with reversed learning contingencies. The instrumental conditioning comprised an extinction test under outcome devaluation conditions. Neonatally lesioned rats, once adults (over 60 days of age), showed a conditioning deficit in the associative paradigm but not in the instrumental one. Lesioned rats remained able to adapt as readily as controls to the reversed learning contingency and were as sensitive as controls to the devaluation of outcome. Such observations indicate that the active access (instrumental learning) to a reward could have compensated for the deficit observed under the ""passive"" stimulus-reward associative learning condition. This feature is compared to the memory management impairments observed in clinical patients. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathological inattention following parietal damage causes perceptual impairments for visual stimuli in the contralesional hemifield. Here we used functional magnetic resonance imaging (fMRI) to examine visual cortex activity in parietal patients as they performed a spatial attention task. Righthemisphere patients and healthy controls viewed counterphasing checkerboards in which coloured targets appeared briefly within the contralesional and ipsilesional hemifields. In separate fMRI runs participants focused their attention covertiy on the left or right hemifield, or on both hemifields concurrentiy. They were required to detect coloured targets that appeared briefly within the attended hemifield(s), and to withhold responses to distractor stimuli. Neural activit}' was significantly attenuated in early visual areas within the damaged hemisphere. Crucially, although attention significantiy modulated early visual activit}' within the intact (left) hemisphere, there was relatively littie modulation of activity within the affected hemisphere. Our findings suggest that parietal lesions alter early cortical responses to contralesional visual inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whenever we plan, imagine, or observe an action, the motor systems that would be involved in preparing and executing that action are similarly engaged. The way in which such common motor activation is formed, however, is likely to differ depending on whether it arises from our own intentional selection of action or from the observation of another's action. In this study, we use time-resolved event-related functional MRI to tease apart neural processes specifically related to the processing of observed actions, the selection of our own intended actions, the preparation for movement, and motor response execution. Participants observed a finger gesture movement or a cue indicating they should select their own finger gesture to perform, followed by a 5-s delay period; participants then performed the observed or self-selected action. During the preparation and readiness for action, prior to initiation, we found activation in a common network of higher motor areas, including dorsal and ventral premotor areas and the pre-supplementary motor area (pre-SMA); the more caudal SMA showed greater activation during movement execution. Importantly, the route to this common motor activation differed depending on whether participants freely selected the actions to perform or whether they observed the actions performed by another person. Observation of action specifically involved activation of inferior and superior parietal regions, reflecting involvement of the dorsal visual pathway in visuomotor processing required for planning the action. In contrast, the selection of action specifically involved the dorsal lateral prefrontal and anterior cingulate cortex, reflecting the role of these prefrontal areas in attentional selection and guiding the selection of responses. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Individuals with autism spectrum disorders typically have normal visuospatial abilities but impaired executive functioning, particularly in abilities related to working memory and attention. The aim of this study was to elucidate the functioning of frontoparietal networks underlying spatial working memory processes during mental rotation in persons with autism spectrum disorders. Method: Seven adolescent males with normal IQ with an autism spectrum disorder and nine age- and IQ-matched male comparison subjects underwent functional magnetic resonance imaging scans while performing a mental rotation task. Results: The autism spectrum disorders group showed less activation in lateral and medial premotor cortex, dorsolateral prefrontal cortex, anterior cingulate gyrus, and caudate nucleus. Conclusions: The finding of less activation in prefrontal regions but not in parietal regions supports a model of dysfunction of frontostriatal networks in autism spectrum disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Schizophrenia has been associated with semantic memory impairment and previous studies report a difficulty in accessing semantic category exemplars (Moelter et al. 2005 Schizophr Res 78:209–217). The anterior temporal cortex (ATC) has been implicated in the representation of semantic knowledge (Rogers et al. 2004 Psychol Rev 111(1):205–235). We conducted a high-field (4T) fMRI study with the Category Judgment and Substitution Task (CJAST), an analogue of the Hayling test. We hypothesised that differential activation of the temporal lobe would be observed in schizophrenia patients versus controls. Methods Eight schizophrenia patients (7M : 1F) and eight matched controls performed the CJAST, involving a randomised series of 55 common nouns (from five semantic categories) across three conditions: semantic categorisation, anomalous categorisation and word reading. High-resolution 3D T1-weighted images and GE EPI with BOLD contrast and sparse temporal sampling were acquired on a 4T Bruker MedSpec system. Image processing and analyses were performed with SPM2. Results Differential activation in the left ATC was found for anomalous categorisation relative to category judgment, in patients versus controls. Conclusions We examined semantic memory deficits in schizophrenia using a novel fMRI task. Since the ATC corresponds to an area involved in accessing abstract semantic representations (Moelter et al. 2005), these results suggest schizophrenia patients utilise the same neural network as healthy controls, however it is compromised in the patients and the different ATC activity might be attributable to weakening of category-to-category associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite significant advancements in psychopharmacology, treating major depressive disorder (MDD) is still a challenge considering the efficacy, tolerability, safety, and economical costs of most antidepressant drugs. One approach that has been increasingly investigated is modulation of cortical activity with tools of non-invasive brain stimulation - such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS). Due to its profile, tDCS seems to be a safe and affordable approach. Methods and design: The SELECT TDCS trial aims to compare sertraline vs. tDCS in a double-blinded, randomized, factorial trial enrolling 120 participants to be allocated to four groups to receive sertraline + tDCS, sertraline, tDCS or placebo. Eligibility criteria are moderate-to-severe unipolar depression (Hamilton Depression Rating Scale >17) not currently on sertraline treatment. Treatment will last 6 weeks and the primary outcome is depression change in the Montgomery-Asberg Depression Rating Score (MADRS). Potential biological markers that mediate response, such as BDNF serum levels, Val66Met BDNF polymorphism, and heart rate variability will also be examined. A neuropsychological battery with a focus on executive functioning will be administered. Discussion: With this design we will be able to investigate whether tDCS is more effective than placebo in a sample of patients free of antidepressants and in addition, we will be able to secondarily compare the effect sizes of sertraline vs. tDCS and also the comparison between tDCS and combination of tDCS and sertraline. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with BA (12 mg/kg, ip) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after RA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of ICA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death. (C) 1997 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms underlying the effects of antidepressant treatment in patients with Parkinson`s disease (PD) are unclear. The neural changes after successful therapy investigated by neuroimaging methods can give insights into the mechanisms of action related to a specific treatment choice. To study the mechanisms of neural modulation of repetitive transcranial magnetic Stimulation (rTMS) and fluoxetine, 21 PD depressed patients were randomized into only two active treatment groups for 4 wk: active rTMS over left dorsolateral prefrontal cortex (DLPFC) (5 Hz rTMS; 120% motor threshold) with placebo pill and sham rTMS with fluoxetine 20mg/d. Event-related functional magnetic resonance imaging (fMRI) with emotional stimuli was performed before and after treatment - in two sessions (test and re-test) at each time-point. The two groups of treatment had a significant, similar mood improvement. After rTMS treatment, there were brain activity decreases in left fusiform gyrus, cerebellum and right DLPFC and brain activity increases in left DLPFC and anterior cingulate gyrus compared to baseline. In contrast, after fluoxetine treatment, there were brain activity increases in right premotor and right medial prefrontal cortex. There was a significant interaction effect between groups vs. time in the left medial prefrontal cortex, suggesting that the activity in this area changed differently in the two treatment groups. Our findings show that antidepressant effects of rTMS and fluoxetine in PD are associated with changes in different areas of the depression-related neural network.