989 resultados para fixed path methods
Resumo:
Purpose: To determine the relationship of goblet cell density (GCD) with tear function and ocular surface physiology. Methods: This was a cross-sectional study conducted in 35 asymptomatic subjects with mean age 23.8±3.6 years. Tear film assessment, conjunctiva and cornea examination were done in each subject. Conjunctival impression cytology was performed by applying Nitrocellulose Millipore MFTM-Membrane filter over the superior bulbar conjunctiva. The filter paper was than fixed with 96% ethanol and stained with Periodic Acid Schiff, Hematoxylin and Eosin. GCD was determined by optical microscopy. Relation between GCD and Schirmer score, tear break-up time (TBUT), bulbar redness, limbal redness and corneal staining was determined. Results: The mean GCD was 151±122 cells/mm2. GCD was found higher in eyes with higher Schirmer score but it was not significant (p = 0.75). There was a significant relationship ofGCDwith TBUT (p = 0.042). GCD was not correlated with bulbar redness (p = 0.126), and limbal redness (p = 0.054) as well as corneal staining (p = 0.079). No relationship of GCD with age and gender of the subjects (p > 0.05) was observed. Conclusion: GCD was found correlated with TBUT but no significant correlation was found with the aqueous portion of the tear, limbal as well as bulbar redness and corneal staining.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Introduction Electroconvulsive therapy (ECT) is considered the most effective treatment for catatonia regardless its underlying condition. The rigid fixed posture and immobility observed in catatonia may lead to several clinical complications, of which, pulmonary embolism (PE) is one of the most severe. The rapid improvement of the psychiatric condition in catatonia-related PE is essential, since immobility favors the occurrence of new thromboembolic events and further complications. In that scenario, ECT should be considered, based on a risk-benefit analysis, aiming at the faster resolution of the catatonia. Methods Case report and literature review. Results A 66-years-old woman admitted to the psychiatric ward with catatonia due to a depressive episode presented bilateral PE. Clinically stable, but still severely depressed after a trial of antidepressants, she was treated with ECT in the course of full anticoagulation with enoxaparin. After five ECT sessions, her mood was significantly better and she was walking and eating spontaneously. She did not present complications related either to PE or to anticoagulation. After the eighth ECT session, she evolved with hypomania, which was managed with oral medication adjustments. The patient was completely euthymic at discharge. Conclusion The case we presented provides further evidence to the anecdotal case reports on the safety of ECT in the course of concomitant full anticoagulant therapy after PE, and illustrates how, with the proper precautions, the benefits of ECT in such condition might outweigh its risks.
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
PURPOSE: To develop a stereological comparison between right (RV) and left ventricle (LV) myocardium during the third human gestational trimester. METHODS: Five human fetal hearts of the third trimester provided representative samples of 5 RV myocardium and 4 LV myocardium. The material was fixed in 10% buffered formaldehyde, and processed through routine methods. Fifteen microscopic fields were randomly chosen and counted in each ventricular myocardium using an "M-42" test system. The following stereological parameters were assessed: Vv (%), Lv (µm²), Sv (µm²/µm³), Vp (µm³), Nv (1/mm³) and total N. RESULTS: No significant difference between the stereological parameters of the myocardial structures assessed was evidenced, when comparing RV and LV. CONCLUSION: Right and left human ventricular myocardium are very similar during the fetal period at least in regard to their structural aspects.
Resumo:
PURPOSE: To assess anatomical characteristics of the aortic valve, so that they may be useful in diagnostic situations and surgical treatment. METHODS: The study analyzed 100 healthy fixed human hearts; 84% of them obtained from males, 61% of them from Caucasian individuals. The ages of the individuals ranged from 9 to 86 years (mean 30±15.5 years). The characteristics assessed related to age, sex, and race were the following: number and height of the cusps, size of the lunulae, internal and external intercommissural distance, position of the coronary ostium in relation to the aortic valve, position of the ventricular septum in relation to the aortic valve, thickness of the cusps. RESULTS: All hearts assessed had a tricuspidal aortic valve. In regard to the height of the cusps and size of the lunula, the left coronary cusp was larger, followed by the right coronary cusp and the noncoronary cusp. The internal and external intercommissural distances had mean values of 24.6±5.7mm and 19.7±7mm, respectively. In regard to the position of the coronary ostia, in one heart two ostia emerged from the left coronary sinus, and in another, the ostium was supracommissural. The mean diameter of the aorta was 21.8±3.6mm, and there were no significant sexual or racial differences, but the diameter increased progressively with the increase in age. The thickness of the cusps did not show any significant difference in the 3 points assessed. CONCLUSION: The aortic valve annulus did not show a perfect circumference, with some variations in the measurements of the annulus, in the cusps and in the relation with the ventricular septum.
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"