987 resultados para fiber-Bragg-grating sensor
Resumo:
A three-phase hollow-fiber liquid-phase microextraction method for the analysis of rosiglitazone and its metabolites N-desmethyl rosiglitazone and p-hydroxy rosiglitazone in microsomal preparations is described for the first time. The drug and metabolites HPLC determination was carried out using an X-Terra RP-18 column, at 22 degrees C. The mobile phase was composed of water, acetonitrile and acetic acid (85:15:0.5, v/v/v) and the detection was performed at 245 nm. The hollow-fiber liquid-phase microextraction procedure was optimized using multifactorial experiments and the following optimal condition was established: sample agitation at 1750 rpm, extraction for 30 min, hydrochloric acid 0.01 mol/L as acceptor phase, 1-octanol as organic phase, and donor phase pH adjustment to 8.0. The recovery rates, obtained by using 1 mL of microsomal preparation, were 47-70%. The method presented LOQs of 50 ng/mL and it was linear over the concentration range of 50-6000 ng/mL, with correlation coefficients (r) higher than 0.9960, for all analytes. The validated method was employed to study the in vitro biotransformation of rosiglitazone using rat liver microsomal fraction.
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.
Resumo:
The free running linewidth of an external cavity grating feedback diode laser is on the order of a few megahertz and is limited by the mechanical and acoustic vibrations of the external cavity. Such frequency fluctuations can be removed by electronic feedback. We present a hybrid stabilisation technique that uses both a Fabry-Perot confocal cavity and an atomic resonance to achieve excellent short and long term frequency stability. The system has been shown to reduce the laser linewidth of an external cavity diode laser by an order of magnitude to 140 kHz, while limiting frequency excursions to 60 kHz relative to an absolute reference over periods of several hours. The scheme also presents a simple way to frequency offset two lasers many gigahertz apart which should find a use in atom cooling experiments, where hyperfine ground-state frequency separations are often required.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
The electrochemical performance of carbon fibers (CF) and boron-doped diamond electrodes grown on carbon fiber substrate (BDD/CF) was studied. CF substrates were obtained from polyacrylonitrile precursor heat treated at two different temperatures of 1000 and 2000 degrees C to produce the desirable CF carbon graphitization index. This graphitization process influenced the CF conductivity and its chemical surface, also analyzed from X-ray photoelectron spectroscopy measurements. These three-dimensional CF structures allowed a high incorporation of diamond films compared to other carbon substrates such as glass carbon or HOPG. The electrochemical responses, from these four classes of electrodes, were evaluated focusing their application as electrical double-layer capacitors using cyclic voltammetry and impedance measurements. Cyclic voltammetry results revealed that the electrode formed from BDD grown on CF-2000 presented a typical capacitor behavior with the best rectangular shape, compared to those electrodes of CF or BDD/CF-1000. Furthermore, the BDD/CF-2000 electrode presented the lowest impedance, associated to its significant capacitance value of 1940 mu F/cm(2) taking into account the BDD films. This behavior was attributed to the strong dependence between diamond coating texture and the CF graphitization temperature. The largest surface area of BDD/CF-2000 was promoted by its singular film growth mechanism associated to the substrate chemical surface. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrodinger equation. (C) 1997 Optical Society of America.
Resumo:
Purpose: The aversive nature of regenerative milieu is the main problem related to the failure of neuronal restoration in the injured spinal cord which however might be addressed with an adequate repair intervention. We evaluated whether glial cell line-derived neurotrophic factor (GDNF) may increase the ability of sciatic nerve graft, placed in a gap promoted by complete transections of the spinal cord, to enhance motor recovery and local fiber growth. Methods: Rats received a 4 mm-long gap at low thoracic level and were repaired with a fragment of the sciatic nerve. GDNF was added (NERVE+GDNF) or not to the grafts (NERVE-GDNF). Motor behavior score (BBB) and sensorimotor tests-linked to the combined behavior score (CBS), which indicate the degree of the motor improvement and the percentage of functional deficit, respectively, and also the spontaneous motor behavior in an open field by means of an infrared motion sensor activity monitor were analyzed. At the end of the third month post surgery, the tissue composed by the graft and the adjacent regions of the spinal cord was removed and submitted to the immunohistochemistry of the neurofilament-200 (NF-200), growth associated protein-43 (GAP-43), microtubule associated protein-2 (MAP-2), 5-hidroxytryptamine (serotonin, 5-HT) and calcitonin gene related peptide (CGRP). The immunoreactive fibers were quantified at the epicenter of the graft by means of stereological procedures. Results: Higher BBB and lower CBS levels (p < 0.001) were found in NERVE+GDNF rats. GDNF added to the graft increased the levels of individual sensorimotor tests mainly at the third month. Analysis of the spontaneous motor behavior showed decreases in the time and number of small movement events by the third month without changes in time and number of large movement events in the NERVE+GDNF rats. Immunoreactive fibers were encountered inside the grafts and higher amounts of NF-200, GAP-43 and MAP-2 fibers were found in the epicenter of the graft when GDNF was added. A small amount of descending 5-HT fibers was seen reentering in the adjacent caudal levels of the spinal cords which were grafted in the presence of GDNF, event that has not occurred without the neurotrophic factor. GDNF in the graft also led to a large amount of MAP-2 perikarya and fibers in the caudal levels of the cord gray matter, as determined by the microdensitometric image analysis. Conclusions: GDNF added to the nerve graft favored the motor recovery, local neuronal fiber growth and neuroplasticity in the adjacent spinal cord.
Resumo:
Three patients with progressive visual loss, chronic alcoholism and tabagism were submitted to a complete neuro-ophthalmic examination and to retinal nerve fiber layer (RNFL) measurements using optical coherence tomography (OCT) scanning. Two patients showed marked RNFL loss in the temporal sector of the optic disc. However, a third patient presented RNFL measurements within or above normal limits, based on the Stratus-OCT normative database. Such findings may be due to possible RNFL edema similar to the one that may occur in the acute phase of toxic optic neuropathies. Stratus-OCT was able to detect RNFL loss in the papillomacular bundle of patients with tobacco-alcohol-induced toxic optic neuropathy. However, interpretation must be careful when OCT does not show abnormality in order to prevent diagnostic confusion, since overestimation of RNFL thickness measurements is possible in such cases.
Resumo:
Objectives: To analyze the presence and distribution of collagen fibers and versican in human vocal fold lamina propria of fetal larynges. Study Design: Cross sectional analysis of cadaveric vocal folds of human fetuses. Methods: Seven fetal larynges obtained from 28- to 36-week-old fetuses were analyzed with the Picrosirius-polarization method, immunohistochemistry, and image analysis. Results: Collagen fibers within the lamina propria exhibited a monolaminar distribution pattern and spatial arrangement in ""wicker basket."" Versican distribution was larger in the superficial and intermediate layers when compared to the deep layer. Conclusion: Our findings suggest that collagen and versican distribution and arrangement within the lamina propria in the developing fetus are important for vocalization at birth.
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
PURPOSE. To evaluate and compare rates of change in neuro-retinal rim area (RA) and retinal nerve fiber layer thickness (RNFLT) measurements in glaucoma patients, those with suspected glaucoma, and normal subjects observed over time. METHODS. In this observational cohort study, patients recruited from two longitudinal studies (Diagnostic Innovations in Glaucoma Study-DIGS and African Descent and Evaluation Study-ADAGES) were observed with standard achromatic perimetry (SAP), optic disc stereophotographs, confocal scanning laser ophthalmoscopy (HRT-3; Heidelberg Engineering, Heidelberg, Germany), and scanning laser polarimetry (GDx-VCC; Carl Zeiss Meditec, Inc., Dublin, CA). Glaucoma progression was determined by the Guided Progression Analysis software for standard automated perimetry [SAP] and by masked assessment of serial optic disc stereophotographs by expert graders. Random-coefficients models were used to evaluate rates of change in average RNFLT and global RA measurements and their relationship with glaucoma progression. RESULTS. At baseline, 194 (31%) eyes were glaucomatous, 347 (55%) had suspected glaucoma, and 88 (14%) were normal. Forty-six (9%) eyes showed progression by SAP and/or stereophotographs, during an average follow-up of 3.3 (+/-0.7) years. The average rate of decline for RNFLT measurements was significantly higher in the progressing group than in the non-progressing group (-0.65 vs. -0.11 mu m/y, respectively; P < 0.001), whereas RA decline was not significantly different between these groups (-0.0058 vs. -0.0073 mm(2)/y, respectively; P = 0.727). The areas under the receiver operating characteristic (ROC) curves used to discriminate progressing versus nonprogressing eyes were 0.811 and 0.507 for the rates of change in the RNFLT and RA, respectively (P < 0.001). CONCLUSIONS. The ability to discriminate eyes with progressing glaucoma by SAP and/or stereophotographs from stable eyes was significantly greater for RNFLT than for RA measurements. (Invest Ophthalmol Vis Sci. 2010;51:3531-3539) DOI: 10.1167/iovs.09-4350
Resumo:
The present study provides a detailed description of morphological and hodological aspects of the glomerular nucleus in the weakly electric fish Gymnotus sp., and explores the evolutionary and functional implications flowing from this analysis. The glomerular nucleus of Gymnotus shows numerous morphological similarities with the glomerular nucleus of percomorph fish, although cytoarchitectonically simpler. In addition, congruence of the histochemical acetylcholinesterase (AChE) distribution with cytoarchitectonic data suggests that the glomerular nucleus, together with the ventromedial cell group of the medial subdivision of the preglomerular complex (PGm-vmc) rostrally, and the subglomerular nucleus (as identified by Maler et al. [1991] J Chem Neuroanat 4:1-38) caudally, may form a distinct longitudinally organized glomerular complex. Our results show that an important source of sensory afferents to the glomerular nucleus originates in the pretectal and electrosensorius nuclei. The glomerular nucleus in turn projects to the hypothalamus (inferior lobe and anterior hypothalamus), to the anterior tuberal nucleus, and to the medial region of the preglomerular nucleus (PGm). These data suggest that visual and electrosensory information reach the glomerular nucleus and are relayed to the hypothalamus and, via PGm, to the pallium. Such connections are similar to those of the glomerular nucleus in percomorphs and the posterior pretectal nucleus in osteoglossomorph, esocids, and salmonids, where they comprise one component of a visual processing pathway. In Gymnotiform fish, however, the pretectal region that projects to the glomerular nucleus is dominated by electrosensory input (visual input is minor), which is consistent with the dominant role of electroreception in these fish. J. Comp. Neurol. 519:1658-1676, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
We compared the lignin contents of tropical forages by different analytical methods and evaluated their correlations with parameters related to the degradation of neutral detergent fiber (NDF). The lignin content was evaluated by five methods: cellulose solubilization in sulfuric acid [Lignin (sa)], oxidation with potassium permanganate [Lignin (pm)], the Klason lignin method (KL), solubilization in acetyl bromide from acid detergent fiber (ABLadf) and solubilization in acetyl bromide from the cell wall (ABLcw). Samples from ten grasses and ten legumes were used. The lignin content values obtained by gravimetric methods were also corrected for protein contamination, and the corrected values were referred to as Lignin (sa)p, Lignin (pm)p and KLp. The indigestible fraction of NDF (iNDF), the discrete lag (LAG) and the fractional rate of degradation (kd) of NDF were estimated using an in vitro assay. Correcting for protein resulted in reductions (P < 0.05) in the lignin contents as measured by the Lignin (sa), Lignin (pm) and, especially, the KL methods. There was an interaction (P < 0.05) of analytical method and forage group for lignin content. In general, LKp method provided the higher (P < 0.05) lignin contents. The estimates of lignin content obtained by the Lignin (sa)p, Lignin (pm)p and LKp methods were associated (P > 0.05) with all of the NDF degradation parameters. However, the strongest correlation coefficients for all methods evaluated were obtained with Lignin (pm)p and KLp. The lignin content estimated by the ABLcw method did not correlate (P > 0.05) with any parameters of NDF degradation. There was a correlation (P < 0.05) between the lignin content estimated by the ABLadf method and iNDF content. Nonetheless, this correlation was weaker than those found with gravimetric methods. From these results, we concluded that the gravimetric methods produce residues that are contaminated by nitrogenous compounds. Adjustment for these contaminants is suggested, particularly for the KL method, to express lignin content with greater accuracy. The relationships between lignin content measurements and NDF degradation parameters can be better determined using KLp and Lignin (pm)p methods. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests