903 resultados para facial morphology
Resumo:
In this article, we present FACSGen 2.0, new animation software for creating static and dynamic threedimensional facial expressions on the basis of the Facial Action Coding System (FACS). FACSGen permits total control over the action units (AUs), which can be animated at all levels of intensity and applied alone or in combination to an infinite number of faces. In two studies, we tested the validity of the software for the AU appearance defined in the FACS manual and the conveyed emotionality of FACSGen expressions. In Experiment 1, four FACS-certified coders evaluated the complete set of 35 single AUs and 54 AU combinations for AU presence or absence, appearance quality, intensity, and asymmetry. In Experiment 2, lay participants performed a recognition task on emotional expressions created with FACSGen software and rated the similarity of expressions displayed by human and FACSGen faces. Results showed good to excellent classification levels for all AUs by the four FACS coders, suggesting that the AUs are valid exemplars of FACS specifications. Lay participants’ recognition rates for nine emotions were high, and comparisons of human and FACSGen expressions were very similar. The findings demonstrate the effectiveness of the software in producing reliable and emotionally valid expressions, and suggest its application in numerous scientific areas, including perception, emotion, and clinical and euroscience research.
Resumo:
The ability to create accurate geometric models of neuronal morphology is important for understanding the role of shape in information processing. Despite a significant amount of research on automating neuron reconstructions from image stacks obtained via microscopy, in practice most data are still collected manually. This paper describes Neuromantic, an open source system for three dimensional digital tracing of neurites. Neuromantic reconstructions are comparable in quality to those of existing commercial and freeware systems while balancing speed and accuracy of manual reconstruction. The combination of semi-automatic tracing, intuitive editing, and ability of visualizing large image stacks on standard computing platforms provides a versatile tool that can help address the reconstructions availability bottleneck. Practical considerations for reducing the computational time and space requirements of the extended algorithm are also discussed.
Resumo:
The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.
Resumo:
Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.
Resumo:
This study demonstrates that making a standardized pain face increases negative affect in response to nociceptive stimulation, even in the absence of social feedback. This suggests that exaggerated facial displays of pain, although often socially reinforced, may also have unintended aversive consequences.
Resumo:
Introduction: Observations of behaviour and research using eye-tracking technology have shown that individuals with Williams syndrome (WS) pay an unusual amount of attention to other people’s faces. The present research examines whether this attention to faces is moderated by the valence of emotional expression. Method: Sixteen participants with WS aged between 13 and 29 years (Mean=19 years 9 months) completed a dot-probe task in which pairs of faces displaying happy, angry and neutral expressions were presented. The performance of the WS group was compared to two groups of typically developing control participants, individually matched to the participants in the WS group on either chronological age or mental age. General mental age was assessed in the WS group using the Woodcock Johnson Test of Cognitive Ability Revised (WJ-COG-R; Woodcock & Johnson, 1989; 1990). Results: Compared to both control groups, the WS group exhibited a greater attention bias for happy faces. In contrast, no between-group differences in bias for angry faces were obtained. Conclusions: The results are discussed in relation to recent neuroimaging findings and the hypersocial behaviour that is characteristic of the WS population.
Resumo:
Wheat gluten proteins, gliadins and glutenins, are of great importance in determining the unique biomechanical properties of wheat. Studies have therefore been carried out to determine their pathways and mechanisms of synthesis, folding, and deposition in protein bodies. In the present work, a set of transgenic wheat lines has been studied with strongly suppressed levels of γ-gliadins and/or all groups of gliadins, using light and fluorescence microscopy combined with immunodetection using specific antibodies for γ-gliadins and HMW glutenin subunits. These lines represent a unique material to study the formation and fusion of protein bodies in developing seeds of wheat. Higher amounts of HMW subunits were present in most of the transgenic lines but only the lines with suppression of all gliadins showed differences in the formation and fusion of the protein bodies. Large rounded protein bodies were found in the wild-type lines and the transgenic lines with reduced levels of γ-gliadins, while the lines with all gliadins down-regulated had protein bodies of irregular shape and irregular formation. The size and number of inclusions, which have been reported to contain triticins, were also higher in the protein bodies in the lines with all the gliadins down-regulated. Changes in the protein composition and PB morphology reported in the transgenic lines with all gliadins down-regulated did not result in marked changes in the total protein content or instability of the different fractions.
Resumo:
Vegetation and building morphology characteristics are investigated at 19 sites on a north-south LiDAR transect across the megacity of London. Local maxima of mean building height and building plan area density at the city centre are evident. Surprisingly, the mean vegetation height (zv3) is also found to be highest in the city centre. From the LiDAR data various morphological parameters are derived as well as shadow patterns. Continuous images of the effects of buildings and of buildings plus vegetationon sky view factor (Ψ) are derived. A general reduction of Ψ is found, indicating the importance of including vegetation when deriving Ψ in urban areas. The contribution of vegetation to the shadowing at ground level is higher during summer than in autumn. Using these 3D data the influence on urban climate and mean radiant temperature (T mrt ) is calculated with SOLWEIG. The results from these simulations highlight that vegetation can be most effective at reducing heat stress within dense urban environments in summer. The daytime average T mrt is found to be lowest in the densest urban environments due to shadowing; foremost from buildings but also from trees. It is clearly shown that this method could be used to quantify the influence of vegetation on T mrt within the urban environment. The results presented in this paper highlight a number of possible climate sensitive planning practices for urban areas at the local scale (i.e. 102- 5 × 103 m).
Resumo:
The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.
Resumo:
Atomic force microscopy is used to study the ordering dynamics of symmetric diblock copolymer films. The films order to form a lamellar structure which results in a frustration when the film thickness is incommensurate with the lamellae. By probing the morphology of incommensurate films in the early ordering stages, we discover an intermediate phase of lamellae arranged perpendicular to the film surface. This morphology is accompanied by a continuous growth in amplitude of the film surface topography with a characteristic wavelength, indicative of a spinodal process. Using selfconsistent field theory, we show that the observation of perpendicular lamellae suggests an intermediate state with parallel lamellae at the substrate and perpendicular lamellae at the free surface. The calculations confirm that the intermediate state is unstable to thickness fluctuations, thereby driving the spinodal growth of surface structures.
Resumo:
A set of high-resolution radar observations of convective storms has been collected to evaluate such storms in the UK Met Office Unified Model during the DYMECS project (Dynamical and Microphysical Evolution of Convective Storms). The 3-GHz Chilbolton Advanced Meteorological Radar was set up with a scan-scheduling algorithm to automatically track convective storms identified in real-time from the operational rainfall radar network. More than 1,000 storm observations gathered over fifteen days in 2011 and 2012 are used to evaluate the model under various synoptic conditions supporting convection. In terms of the detailed three-dimensional morphology, storms in the 1500-m grid-length simulations are shown to produce horizontal structures a factor 1.5–2 wider compared to radar observations. A set of nested model runs at grid lengths down to 100m show that the models converge in terms of storm width, but the storm structures in the simulations with the smallest grid lengths are too narrow and too intense compared to the radar observations. The modelled storms were surrounded by a region of drizzle without ice reflectivities above 0 dBZ aloft, which was related to the dominance of ice crystals and was improved by allowing only aggregates as an ice particle habit. Simulations with graupel outperformed the standard configuration for heavy-rain profiles, but the storm structures were a factor 2 too wide and the convective cores 2 km too deep.
Resumo:
The aim of this paper is to examine the acquisition pattern of person and number verb morphology within the generative framework and to compare the results of the analyses with previous research in Greek and other European languages. The study considers previous data on the acquisition of subject-verb agreement, and thereafter, examines the acquisition of person and number morphology in a new dataset of two monolingual Greek-speaking children. The analyses present quantitative data of accuracy of person and number marking, error data, and qualitative analyses addressing the productivity of person and number marking. The results suggest that person and number morphology is used correctly and productively from a very early age in Greek speaking children. The findings provide new insight into early Greek language acquisition and are also relevant for research in early development of languages with rich inflectional morphology.
Resumo:
This paper describes the methodology used to compile a corpus called MorphoQuantics that contains a comprehensive set of 17,943 complex word types extracted from the spoken component of the British National Corpus (BNC). The categorisation of these complex words was derived primarily from the classification of Prefixes, Suffixes and Combining Forms proposed by Stein (2007). The MorphoQuantics corpus has been made available on a website of the same name; it lists 554 word-initial and 281 word-final morphemes in English, their etymology and meaning, and records the type and token frequencies of all the associated complex words containing these morphemes from the spoken element of the BNC, together with their Part of Speech. The results show that, although the number of word-initial affixes is nearly double that of word-final affixes, the relative number of each observed in the BNC is very similar; however, word-final affixes are more productive in that, on average, the frequency with which they attach to different bases is three times that of word-initial affixes. Finally, this paper considers how linguists, psycholinguists and psychologists may use MorphoQuantics to support their empirical work in first and second language acquisition, and clinical and educational research.
Resumo:
Sensitive optical detection of nitroaromatic vapours with diketo-pyrrolopyrrole thin films is reported for the first time and the impact of thin film crystal structure and morphology on fluorescence quenching behaviour demonstrated.
Resumo:
Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain–computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). Significance. The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.