987 resultados para experimental runs
Resumo:
(Document pdf contains 19 pages)
Resumo:
Research on moral cleansing and moral self-licensing has introduced dynamic considerations in the theory of moral behavior. Past bad actions trigger negative feelings that make people more likely to engage in future moral behavior to offset them. Symmetrically, past good deeds favor a positive self-perception that creates licensing effects, leading people to engage in behavior that is less likely to be moral. In short, a deviation from a “normal state of being” is balanced with a subsequent action that compensates the prior behavior. We model the decision of an individual trying to reach the optimal level of moral self-worth over time and show that under certain conditions the optimal sequence of actions follows a regular pattern which combines good and bad actions. We conduct an economic experiment where subjects play a sequence of giving decisions (dictator games) to explore this phenomenon. We find that donation in the previous period affects present decisions and the sign is negative: participants’ behavior in every round is negatively correlated to what they did in the past. Hence donations over time seem to be the result of a regular pattern of self-regulation: moral licensing (being selfish after altruist) and cleansing (altruistic after selfish).
Resumo:
Stolon formation and fragmentation are two vegetative mechanisms by which hydrilla colonies expand. These two mechanisms of spread were studied in ponds located in Lewisville, TX over a two-year period. Stolons were determined to be the predominant mechanism for localized expansion in undisturbed areas. While some fragments were produced, they accounted for only 0.1% of the establishment of rooted plants in new quadrats. Peak production of fragments occurred in October and November, with fragment densities of 0.15 N m-2 d-1. Expansion by stolons occurred between June and November of each year, with higher rates of spread (up to 4.0 cm d-1 radial growth) observed in the second season.
Resumo:
Studies were conducted to evaluate whether the herbicide imazapyr or a combination of imazapyr and fluridone could be used effectively to control torpedograss ( Panicum repens L.), an exotic perennial plant that has replaced more than 6,000 ha of native vegetation and degraded quality wildlife habitat in Lake Okeechobee, Florida. Torpedograss was controlled for more than one year in some areas following a single aerial treatment using 0.56, 0.84, or 1.12 kg acid equivalents (ae) imazapyr/ha. Combining imazapyr and fluridone did not increase the level of torpedograss control. In areas where plant biomass was reduced by fire prior to being treated with 0.84 or 1.12 kg ae imazapyr/ha, torpedograss was controlled for more than two years and native plant species, including duck potato ( Sagittaria lancifolia L.) and pickerelweed ( Pontederia cordata L.) became the dominant vegetation in less than one year. Although torpedograss was controlled in some areas, little or no long-term control was observed at 16 of the 26 treatment locations. To reduce the uncertainty associated with predicting long-term treatment affects, additional studies are needed to determine whether environmental factors such as periphyton mats, plant thatch, hydroperiod and water depth affect treatment efficacy. , he
Resumo:
The specialist aquatic herbivore Euhrychiopsis lecontei (Dietz) is currently being researched as a potential biological control agent for Eurasian watermilfoil (Myriophyllum spicatum L.). Our research in Wisconsin focused on 1) determining milfoil weevil distribution across lakes, 2) assessing limnological characteristics associated with their abundance, and 3) evaluating milfoil weevil augmentation as a practical management tool for controlling Eurasian watermilfoil.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
Following the quantitative determination of dust cloud parameters, this study investigates the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160 x 160 mm square cross section, and gives particular attention to the effect of small scale turbulence and small turbulence intensity on flame characteristics. Dust suspensions in air were produced using an improved apparatus ensuring more uniform distribution and repeatable dust concentrations in the testing duct. The dispersion-induced turbulence was measured by means of a particle image velocimetry (PIV) system, and dust concentrations were estimated by direct weighing method. This quantitative assessment made it possible to correlate observed flame behaviors with the parameters of the dust cloud. Upward propagating dust flames, from both closed/open bottom end to open/closed top end of the duct, were visualized by direct light and shadow photography. From the observation of propagation regimes and the measurements of flame velocity, a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition was determined to be 10 cm/s. Laminar flames propagated with oscillations from the closed bottom end to the open top end of the testing duct, while the turbulent flames accelerated continuously. Both laminar and turbulent flames propagated with steady velocity from the open bottom end to the closed top end of the duct. The measured propagation velocity of laminar flames appeared to be in the range of 0.45-0.56 m/s, and it was consistent with the measurements reported in the literature. In the present experimental study, the influence of dust concentration on flame propagation was also examined, and the flame propagation velocity was found weakly sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of the dust combustion process.
Resumo:
A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.
Resumo:
An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.