818 resultados para exercise to recovery ration
Resumo:
Ultra-endurance races are extreme exercise events that can take place over large parts of a day, several consecutive days or over weeks and months interspersed by periods of rest and recovery. Since the first ultraendurance races in the late 1970s, around 1000 races are now held worldwide each year, and more than 100000 people take part. Although these athletes appear to be fit and healthy, there have been occasional reports of severe complications following ultra-endurance exercise. Thus there is concern that repeated extreme exercise events could have deleterious effects on health, which might be brought about by the high levels of ROS (reactive oxygen species) produced during exercise. Studies that have examined biomarkers of oxidative damage following ultra-endurance exercise have found measurements to be elevated for several days, which has usually been interpreted to reflect increased ROS production. Levels of the antioxidant molecule GSH (reduced glutathione) are depleted for 1 month or longer following ultra-endurance exercise, suggesting an impaired capacity to copewith ROS. The present paper summarizes studies that have examined the oxidative footprint of ultra-endurance exercise in light of current thinking in redox biology and the possible health implications of such extreme exercise. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
Introduction. Peroxiredoxin (PRDX) and thioredoxin (TRX) are antioxidant proteins that control cellular signalling and redox balance, although their response to exercise is unknown. This study aimed to assess key aspects of the PRDX-TRX redox cycle in response to three different modes of exercise. Methods. Healthy males (n = 10, mean ± SD: 22 ± 3 yrs) undertook three exercise trials on separate days: two steady-state cycling trials at moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensities, and a low-volume high-intensity interval training trial (10 × 1 min 90% VO2MAX, LV-HIIT). Peripheral blood mononuclear cells were assessed for TRX-1 and over-oxidised PRDX (isoforms I-IV) protein expression before, during, and 30 min following exercise (post + 30). The activities of TRX reductase (TRX-R) and the nuclear factor kappa B (NF-κB) p65 subunit were also assessed. Results. TRX-1 increased during exercise in all trials (MOD, + 84.5%; HIGH, + 64.1%; LV-HIIT, + 205.7%; p < 05), whereas over-oxidised PRDX increased during HIGH only (MOD, - 28.7%; HIGH, + 202.9%; LV-HIIT, - 22.7%; p < .05). TRX-R and NF-κB p65 activity increased during exercise in all trials, with the greatest response in TRX-R activity seen in HIGH (p < 0.05). Discussion. All trials stimulated a transient increase in TRX-1 protein expression during exercise. Only HIGH induced a transient over-oxidation of PRDX, alongside the greatest change in TRX-R activity. Future studies are needed to clarify the significance of heightened peroxide exposure during continuous high-intensity exercise and the mechanisms of PRDX-regulatory control.
Resumo:
∗This research, which was funded by a grant from the Natural Sciences and Engineering Research Council of Canada, formed part of G.A.’s Ph.D. thesis [1].
Resumo:
Although regular exercise is the key to a healthy lifestyle, college students are insufficiently active to maintain good health. Motivations to exercise may vary among different ethnic groups. The results of a pilot study using the Theory of Planned Behavior (Gordon, 2008) showed that ethnically diverse college students can rate their beliefs (behavioral, social, and cognitive) pertaining to physical activity.
Resumo:
This project was funded by the National Institute for Health Research (NIHR) Health Services and Delivery Research programme and will be published in full in Health Services and Delivery Research; Vol. 4, No. 24. See the NIHR Journals Library website for further project information.
Resumo:
The expansion of the specialty of sports and exercise medicine (SEM) is a relatively recent development in the medical community and the role of the SEM specialist continues to evolve and develop. The SEM specialist is ideally placed to care for all aspects of physical activity not only in athletes but also in the general population. As an advocate for physical activity the SEM specialist plays a broad role in advising safe effective sports and recreation participation; screening for disease related to sports participation; examining and contributing to the evidence behind treatment strategies and evaluating any potential negative impact of sports injury prevention measures. In this thesis I will demonstrate the breadth of the role the Sports and Exercise Medicine Specialist from epidemiology to in-depth examination of treatment strategies. In Chapter 2, I examined the epidemiology of sports and recreation related injury (SRI) in Ireland, an area that has previously been poorly studied. We report on 3,172 SRI (14% of total presentations) presentations to the ED over 6 months. Paediatric patients (4-16 yrs) were over represented comprising 39.9% of all SRI presentation compared to 16% of total ED presentations and 18% of the general population. These injuries were serious (32% fractures) and though 49% of injuries occurred during organised competition/practice, 41.5% occurred during recreation-most often at home. In Chapter 3, I examined risk factors associated with hand injury in hurling. The previous chapter highlighted the importance of a firm evidence base underpinning treatment strategies. When measures to improve welfare are introduced not only must potential benefits be measured, so too must potential unwanted adverse outcomes. In this study I examined a cohort of adult hurlers who had presented to the ED with a hurling related injury in order to highlight the variables associated with hand injury in this population. I found the athletes who wore a helmet were far more likely (OR 3.15 95% CI (1.51-6.56) p= 0.002) to suffer a hand injury than athletes who did not. Very few of those interviewed (4.9%) used hand protection compared to 65% who used helmet and faceguard. The introduction of the helmet and faceguard in hurling has undeniably decreased the incidence of head and face injury in hurling. However in tandem with this intervention several observational studies have demonstrated an increase in the occurrence of hurling related hand injuries. This study highlights the importance of being cognisant of unanticipated or unintended consequences when implementing a new treatment or intervention. In Chapter 4, I examined the role of population screening as applied to sport and exercise. This is a controversial area –cardiac screening in the exercising population has been the subject of much debate. Specifically I define the prevalence of exercise induced bronchoconstriction (EIB) using a specifically designed sports specific field-testing protocol. In this study I found almost a third (29%) of a full international professional rugby squad had confirmed asthma or EIB, as compared with 12-15% of the general population. Despite regular medical screening, 5 ‘new’ untreated cases (12%) were elicited by the challenge test and in the group already on treatment for asthma/EIB; over 50% still displayed EIB. In Chapter 5, I examined the evidence supporting current treatment options for iliotibial band friction syndrome (ITBFS). The practice of sports medicine has traditionally been ‘eminence based’ rather than ‘evidence based’. This may be problematic as some of these practices are based upon flawed principles- for example the treatment of iliotibial band friction syndrome (ITBFS). In this chapter, using cadaveric and biomechanical studies I expand upon the growing base of evidence clarifying the anatomy and biomechanics of the area-thereby re-examining the principles on which current treatments are based. The role of the SEM specialist is broad; we chose to examine specific examples of some of the roles that they execute. An understanding of the epidemiology of SRI presenting to the ED has implications for individual patients, sports governing bodies and health resource utilisation. Population screening is an important tool in health promotion and disease prevention in the general population. Screening in SEM may have similar less well-recognised benefits. The SEM specialist needs to be conversant in screening for medical conditions concerning physical activity. A comprehensive understanding of the pathophysiology of a disease is required for its diagnosis and treatment. Due to the ongoing evolution of SEM many treatments are eminence-based rather than evidence‐based practice. Continued re-examination of the fundamentals of current practice is essential. An awareness of potential unwanted side effects is essential prior to the introduction of any new treatment or intervention. The SEM specialist is ideally placed to advise sports governing bodies on these issues prior to and during their implementation.
Resumo:
© 2014, Canadian Anesthesiologists' Society.Optimal perioperative fluid management is an important component of Enhanced Recovery After Surgery (ERAS) pathways. Fluid management within ERAS should be viewed as a continuum through the preoperative, intraoperative, and postoperative phases. Each phase is important for improving patient outcomes, and suboptimal care in one phase can undermine best practice within the rest of the ERAS pathway. The goal of preoperative fluid management is for the patient to arrive in the operating room in a hydrated and euvolemic state. To achieve this, prolonged fasting is not recommended, and routine mechanical bowel preparation should be avoided. Patients should be encouraged to ingest a clear carbohydrate drink two to three hours before surgery. The goals of intraoperative fluid management are to maintain central euvolemia and to avoid excess salt and water. To achieve this, patients undergoing surgery within an enhanced recovery protocol should have an individualized fluid management plan. As part of this plan, excess crystalloid should be avoided in all patients. For low-risk patients undergoing low-risk surgery, a “zero-balance” approach might be sufficient. In addition, for most patients undergoing major surgery, individualized goal-directed fluid therapy (GDFT) is recommended. Ultimately, however, the additional benefit of GDFT should be determined based on surgical and patient risk factors. Postoperatively, once fluid intake is established, intravenous fluid administration can be discontinued and restarted only if clinically indicated. In the absence of other concerns, detrimental postoperative fluid overload is not justified and “permissive oliguria” could be tolerated.
Resumo:
Background: Older adults experience functional decline in hospital leading to increased healthcare burden and morbidity. The benefits of augmented exercise in hospital remain uncertain. The aim of this trial is to measure the short and longer-term effects of augmented exercise for older medical in-patients on their physical performance, quality of life and health care utilisation. Design and Methods: Two hundred and twenty older medical patients will be blindly randomly allocated to the intervention or sham groups. Both groups will receive usual care (including routine physiotherapy care) augmented by two daily exercise sessions. The sham group will receive stretching and relaxation exercises while the intervention group will receive tailored strengthening and balance exercises. Differences between groups will be measured at baseline, discharge, and three months. The primary outcome measure will be length of stay. The secondary outcome measures will be healthcare utilisation, activity (accelerometry), physical performance (Short Physical Performance Battery), falls history in hospital and quality of life (EQ-5D-5 L). Discussion: This simple intervention has the potential to transform the outcomes of the older patient in the acute setting.
Resumo:
Background: Individuals with chronic obstructive pulmonary disease (COPD) have higher than normal ventilatory equivalents for carbon dioxide (VE/VCO2) during exercise. There is growing evidence that emphysema on thoracic computed tomography (CT) scans is associated with poor exercise capacity in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that emphysema is an underlying cause of microvascular dysfunction and ventilatory inefficiency, which in turn contributes to reduced exercise capacity. We expected ventilatory inefficiency to be associated with a) the extent of emphysema; b) lower diffusing capacity for carbon monoxide; c) a reduced pulmonary blood flow response to exercise; and d) reduced exercise capacity. Methods: In a cross-sectional study, 19 subjects with mild-to-moderate COPD (mean ± SD FEV1= 82 ± 13% predicted, 12 GOLD grade 1) and 26 age-, sex-, and activity-matched controls underwent a ramp-incremental symptom-limited exercise test on a cycle ergometer. Ventilatory inefficiency was assessed by the minimum VE/VCO2 value (nadir). A subset of subjects also completed repeated constant work rate exercise bouts with non-invasive measurements of pulmonary blood flow. Emphysema was quantified as the percentage of attenuation areas below -950 Housefield Units on CT scans. An electronic scoresheet was used to keep track of emphysema sub-types. Results: COPD subjects typically had centrilobular emphysema (76.8 ± 10.1% of total emphysema) in the upper lobes (upper/lower lobe ratio= 0.82 ± 0.04). They had lower peak oxygen uptake (VO2), higher VE/VCO2 nadir and greater dyspnea scores than controls (p<0.05). Lower peak O2 and worse dyspnea were found in COPD subjects with VE/VCO2 nadirs ≥ 30. COPD subjects had blunted increases in pulmonary blood flow from rest to iso-VO2 exercise (p<0.05). Higher VE/VCO2 nadir in COPD subjects correlated with emphysema severity (r= 0.63), which in turn correlated with reduced lung diffusing capacity (r= -0.72) and blunted changes in pulmonary blood flow from rest to exercise (r= -0.69) (p<0.01). Conclusions: Ventilation “wasted” in emphysematous areas is associated with reduced exercise ventilatory efficiency in mild-to-moderate COPD. Exercise ventilatory inefficiency links structure (emphysema) and function (gas transfer) to a key clinical outcome (reduced exercise capacity) in COPD patients with modest spirometric abnormalities.
Resumo:
The walls of blood vessels are lined with a single-cell layer of endothelial cells. As blood flows through the arteries, a frictional force known as shear stress is sensed by mechanosensitive structures on the endothelium. Short and long term changes in shear stress can have a significant influence on the regulation of endothelial function. Acutely, shear stress triggers a pathway that culminates in the release of vasodilatory molecules from the endothelium and subsequent vasodilation of the artery. This endothelial response is known as flow mediated dilation (FMD). FMD is used as an index of endothelial function and is commonly assessed using reactive hyperemia (RH)-FMD, a method which elicits a large, short lived increase in shear stress following the release of a brief (5 min) forearm occlusion. A recent study found that a short term exposure (30 min) to a sustained elevation in shear stress potentiates subsequent RH-FMD. FMD can also result from a more prolonged, sustained increase in shear stress elicited by handgrip exercise (HGEX-FMD). There is evidence to suggest that interventions and conditions impact FMD resulting from sustained and transient shear stress stimuli differently, indicating that HGEX-FMD and RH-FMD provide different information about endothelial function. It is unknown whether HGEX-FMD is improved by short term exposure to shear stress. Understanding how exercise induced FMD is regulated is important because it contributes to blood flow responses during exercise. The study purpose was therefore to assess the impact of a handgrip exercise (intervention) induced sustained elevation in shear stress on subsequent brachial artery (BA) HGEX-FMD. Twenty healthy male participants (22±3yrs) preformed a 30-minute HGEX intervention on two experimental days. BA-FMD was assessed using either an RH or HGEX shear stress stimulus at 3 time points: pre-intervention, 10 min post and 60 min post. FMD and shear stress magnitude were determined via ultrasound. Both HGEX and RH-FMD increased significantly from pre-intervention to 10 min-post (p<0.01). These findings indicate that FMD stimulated by exercise induced increases in shear stress is potentiated by short term shear stress exposure. These findings advance our understanding regarding the regulation of endothelial function by shear stress.
Resumo:
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.
Resumo:
Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.
Resumo:
Recovery and the use of routine outcome measurement tools are key topics for mental health nurses. This article reports on research carried out to assess the usability of an outcome measure designed to assess recovery in clinical practice. Results indicate that the Individual Recovery Outcomes Counter (I.ROC) is both easy to use and well liked by services users.