953 resultados para epilepsy, hippocampus, dopamine, methylxanthines, GABA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amino acid glutamate is the primary excitatory neurotransmitter for the CNS and is responsible for the majority of fast synaptic transmission. Glutamate receptors have been shown to be involved in multiple forms of synaptic plasticity such as LTP, LTD, and the formation of specific synaptic connections during development. In addition to contributing to the plasticity of the CNS, glutamate receptors also are involved in, at least in part, various pathological conditions such as epilepsy, ischemic damage due to stroke, and Huntington's chorea. The regulation of glutamate receptors, particularly the ionotropic NMDA and AMPA/KA receptors is therefore of great interest. In this body of work, glutamate receptor function and regulation by kinase activity was examined using the Xenopus oocyte which is a convenient and faithful expression system for exogenous proteins. Glutamate receptor responses were measured using the two-electrode voltage clamp technique in oocytes injected with rat total forebrain RNA. NMDA elicited currents that were glycine-dependent, subject to block by Mg$\sp{2+}$ in a voltage-dependent manner and sensitive to the specific NMDA antagonist APV in a manner consistent with those types of responses found in neural tissue. Similarly, KA-evoked currents were sensitive to the specific AMPA/KA antagonist CNQX and exhibited current voltage relationships consistent with the calcium permeable type II KA receptors found in the hippocampus. There is evidence to indicate that NMDA and AMPA/KA receptors are regulated by protein kinase A (PKA). We explored this by examining the effects of activators of PKA (forskolin, 1-isobutyl-3-methylxanthine (IBMX) and 8-Br-cAMP) on NMDA and KA currents in the oocyte. In buffer where Ca$\sp{2+}$ was replaced by 2 mM Ba$\sp{2+},$ forskolin plus IBMX and 8-Br-cAMP augmented currents due to NMDA application but not KA. This augmentation was abolished by pretreating the oocytes in the kinase inhibitor K252A. The use of chloride channel blockers resulted in attenuation of this effect indicating that Ba$\sp{2+}$ influx through the NMDA channel was activating the endogenous calcium-activated chloride current and that the cAMP mediated augmentation was at the level of the chloride channel and not the NMDA channel. This was confirmed by (1) the finding that 8-Br-cAMP increased chloride currents elicited via calcium channel activation while having no effect on the calcium channels themselves and (2) the fact that lowering the Ba$\sp{2+}$ concentration to 200 $\mu$M abolished the augmentation NMDA currents by 8-Br-cAMP. Thus PKA does not appear to modulate ionotropic glutamate receptors in our preparation. Another kinase also implicated in the regulation of NMDA receptors, calcium/phospholipid-dependent protein kinase (PKC), was examined for its effects on the NMDA receptor under low Ba$\sp{2+}$ (200 $\mu$M) conditions. Phorbol esters, activators of PKC, induced a robust potentiation of NMDA currents that was blockable by the kinase inhibitor K252A. Furthermore activation of metabotropic receptors by the selective agonist trans-ACPD, also potentiated NMDA albeit more modestly. These results indicate that neither NMDA nor KA-activated glutamate receptors are modulated by PKA in Xenopus oocytes whereas NMDA receptors appear to be augmented by PKC. Furthermore, the endogenous chloride current of the oocyte was found to be responsive to Ba$\sp{2+}$ and in addition is enhanced by PKA. Both of these latter findings are novel. In conclusion, the Xenopus oocyte is a useful expression system for the analysis of ligand-gated channel activity and the regulation of those channels by phosphorylation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epilepsy has been historically seen as a functional brain disorder associated with excessive synchronization of large neuronal populations leading to a hypersynchronous state. Recent evidence showed that epileptiform phenomena, particularly seizures, result from complex interactions between neuronal networks characterized by heterogeneity of neuronal firing and dynamical evolution of synchronization. Desynchronization is often observed preceding seizures or during their early stages; in contrast, high levels of synchronization observed towards the end of seizures may facilitate termination. In this review we discuss cellular and network mechanisms responsible for such complex changes in synchronization. Recent work has identified cell-type-specific inhibitory and excitatory interactions, the dichotomy between neuronal firing and the non-local measurement of local field potentials distant to that firing, and the reflection of the neuronal dark matter problem in non-firing neurons active in seizures. These recent advances have challenged long-established views and are leading to a more rigorous and realistic understanding of the pathophysiology of epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23-60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABA-A receptors are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. 19 different subunit isoforms have been identified, with the major receptor type in mammalian adult brain consisting of α1, β2, and γ2 subunits. GABA-A receptors are the target of numerous sedating and anxiolytic drugs such as benzodiazepines. The currently known endogenous ligands are GABA, neurosteroids and the endocannabinoid 2- arachidonoyl glycerol (2-AG). The pharmacological properties of this chloride ion channel strictly depend on receptor subunit composition and arrangement. GABA-A receptors bind and are inhibited by epileptogenic agents such as picrotoxin, and cyclodiene insecticides such as dieldrin. We screened aromatic monovalent anions with five-fold symmetry for inhibition of GABA-A receptors. One of the anions, PCCPinhibited currents elicited by GABA with comparable potency as picrotoxin. This inhibition showed all characteristics of an open channel block. The GABA-A receptor ion channel is lined by residues from the M2 membrane-spanning segment. To identify important residues of the pore involved in the interaction with the blocking molecules PCCP-, a mutation scan was performed in combination with subsequent analysis of the expressed mutant proteins using electrophysiological techniques. In a second project we characterised a light-switchable modulator of GABA-A receptors based on propofol. It was my responsibility to investigate the switching kinetics in patch clamp experiments. After its discovery in 1980, propofol has become the most widely used intravenous general anaesthetic. It is commonly accepted that the anaesthesia induced by this unusually lipophilic drug mostly results from potentiation of GABA induced currents. While GABA-A receptors respond to a variety of ligands, they are normally not sensitive towards light. This light sensitivity could be indirectly achieved by using modulators that can be optically switched between an active and an inactive form. We tested an azobenzene derivative of propofol where an aryldiazene unit is directly coupled to the pharmacophore. This molecule was termed azopropofol (AP2). The effect of AP2 on Cl- currents was investigated with electrophysiological techniques using α1β2γ2 GABA-A receptors expressed in Xenopus oocytes and HEK-cells. In the third project we wanted to investigate the functional role of GABA-A receptors in the liver, and their possible involvement in cell proliferation. GABA-A receptors are also found in a wide range of peripheral tissues, including parts of the peripheral nervous system and non-neural tissues such as smooth muscle, the female reproductive system, liver and several cancer tissues. However their precise function in non neuronal or cancerous cells is still unknown. For this purpose we investigated expression, localization and function of the hepatocytes GABA-A receptors in model cell lines and healthy and cancerous hepatocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although posttraumatic stress disorder (PTSD) is associated with a variety of structural and functional brain changes, the molecular pathophysiological mechanisms underlying these macroscopic alterations are unknown. Recent studies support the existence of an altered excitation-inhibition balance in PTSD. Further, there is preliminary evidence from blood-sample studies suggesting heightened oxidative stress in PTSD, potentially leading to neural damage through excessive brain levels of free radicals. In this study we investigated PTSD (n=12) and non-PTSD participants (n=17) using single-voxel proton magnetic resonance spectroscopy (MRS) in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). We found significantly higher levels of γ-amino butyric acid (GABA) (a primary inhibitory neurotransmitter) and glutathione (a marker for neuronal oxidative stress) in PTSD participants. Atypically high prefrontal inhibition as well as oxidative stress may be involved in the pathogenesis of PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND There is ample evidence that a subgroup of Parkinson's disease patients who are treated with dopaminergic drugs develop certain behavioral addictions such as pathological gambling. The fact that only a subgroup of these patients develops pathological gambling suggests an interaction between dopaminergic drug treatment and individual susceptibility factors. These are potentially of genetic origin, since research in healthy subjects suggests that vulnerability for pathological gambling may be linked to variation in the dopamine receptor D4 (DRD4) gene. Using a pharmacogenetic approach, we investigated how variation in this gene modulates the impact of dopaminergic stimulation on gambling behavior in healthy subjects. METHODS We administered 300 mg of L-dihydroxyphenylalanine (L-DOPA) or placebo to 200 healthy male subjects who were all genotyped for their DRD4 polymorphism. Subjects played a gambling task 60 minutes after L-DOPA administration. RESULTS Without considering genetic information, L-DOPA administration did not lead to an increase in gambling propensity compared with placebo. As expected, however, an individual's DRD4 polymorphism accounted for variation in gambling behavior after the administration of L-DOPA. Subjects who carry at least one copy of the 7-repeat allele showed an increased gambling propensity after dopaminergic stimulation. CONCLUSIONS These findings demonstrate that genetic variation in the DRD4 gene determines an individual's gambling behavior in response to a dopaminergic drug challenge. They may have implications for the treatment of Parkinson's disease patients by offering a genotype approach for determining individual susceptibilities for pathological gambling and may also afford insights into the vulnerability mechanisms underlying addictive behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report two patients with microdeletions in chromosomal subdomain 15q26.1 encompassing only two genes, CHD2 and RGMA. Both patients present a distinct phenotype with intellectual disability, epilepsy, behavioral issues, truncal obesity, scoliosis and facial dysmorphism. CHD2 haploinsufficiency is known to cause intellectual disability and epilepsy, RGMA haploinsufficiency might explain truncal obesity with onset around puberty observed in our two patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biphenylic compounds related to the natural products magnolol and 4'-O-methylhonokiol were synthesized, evaluated and optimized as positive allosteric modulators (PAMs) of GABA(A) receptors. The most efficacious compounds were the magnolol analog 5-ethyl-5'-hexylbiphenyl-2,2'-diol (45) and the honokiol analogs 4'-methoxy-5-propylbiphenyl-2-ol (61), 5-butyl-4'-methoxybiphenyl-2-ol (62) and 5-hexyl-4'-methoxybiphenyl-2-ol (64), which showed a most powerful potentiation of GABA-induced currents (up to 20-fold at a GABA concentration of 3μM). They were found not to interfere with the allosteric sites occupied by known allosteric modulators, such as benzodiazepines and N-arachidonoylglycerol. These new PAMs will be useful as pharmacological tools and may have therapeutic potential for mono-therapy, or in combination, for example, with GABA(A) receptor agonists.