984 resultados para enzyme analysis
Resumo:
Introduction: Zinc deficiency has been associated with damage and oxidative changes in DNA that may increase an individual`s risk of cancer. Furthermore, zinc metabolism may be affected in cancer patients, leading to alterations in its distribution that would favor carcinogenesis. Plasma and erythrocyte zinc levels in women with breast cancer were evaluated in this cross-sectional, controlled study. Material and methods: Fifty-five premenopausal women of 25 to 49 years of age with and without breast cancer were divided into two groups: Group A, composed of women without breast cancer (controls, n = 26) and Group B, composed of women with breast cancer (cases, n = 29). Plasma and erythrocyte zinc levels were measured by flame atomic absorption spectrophotometry at gamma = 213.9 nm. Diet was assessed using the 3-day diet recall method and analyzed using the NutWin software program, version 1.5. Student`s t-test was used to compare means and significance was established at p <0.05. Results: Mean plasma zinc levels were 69.69 +/- 9.00 g/dt, in the breast cancer patients and 65.93 +/- 12.44 g/dt. in the controls (p = 0.201). Mean erythrocyte zinc level was 41.86 +/- 8.28 mu gZn/gHb in the cases and 47.93 +/- 7.00 mu gZn/gHb in the controls (p < 0.05). In both groups, dietary zinc levels were above the estimated average requirement. Conclusions: The present results suggest that zinc levels are lower in the erythrocyte compartment of premenopausal women with breast cancer.
Resumo:
In this preliminary study eighteen p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides with antimicrobial activity were evaluated against multidrug-resistant Staphylococcus aureus, correlating the three-dimensional characteristics of the ligands with their respective bioactivities. The computer programs Sybyl and CORINA were used, respectively, for the design and three-dimensional conversion of the ligands. Molecular interaction fields were calculated using GRID program. Calculations using Volsurf resulted in a statistically consistent model with 48 structural descriptors showing that hydrophobicity is a fundamental property in the analyzed biological response.
Resumo:
BACKGROUND: There has been growing interest in sodium copper chlorophyllin (Cu-Chl) as a food colourant and supplement owing to its beneficial biological activities. Studies have revealed that this green pigment inhibits experimental carcinogenesis and interacts with proteins and genotoxic agents. Health-related activities have also been associated with the prevention of lipid peroxidation. However, intestinal absorption of this pigment has been considered insignificant, raising questions of whether eventual biological properties are related to pre- or post-absorptive actions. In this study, intestinal absorption of Cu-Chl and its appearance in serum and organs were estimated by high-performance liquid chromatography analysis in rat feeding experiments. The effect of ingested Cu-Chl on lipid peroxidation was analysed by measuring thiobarbituric acid-reactive substances and antioxidant enzyme activities in hepatic and brain tissues of oxidative stress-induced rats. RESULTS: The two main components of commercial Cu-Chl, namely Cu-chlorin e(6) and Cu-chlorin e(4), showed different digestive behaviours, and only Cu-chlorin e4 was found in serum, liver and kidneys. Antioxidant activity in vivo could be observed in brain and seemed to be related to in situ protection but not to antioxidant enzyme modulation. CONCLUSION: As at least one of the major components of Cu-Chl is effectively absorbed, further pharmacolkinetic studies are encouraged to access absorption rates and the role of ingested copper chlorophyllins in mammals. (C) 2009 Society of Chemical Industry
Resumo:
Evaluation of commercially available test kits for Chagas disease for use in blood bank screening is difficult due to a lack of large and well-characterized specimen panels. This study presents a collaborative effort of Latin American blood centers and the World Health Organization (WHO) to establish such a panel. A total of 437 specimens, from 10 countries were collected and sent to the WHO Collaborating Center in Sao Paulo and used to evaluate 19 screening assays during 2001 through 2005. Specimens were assigned a positive or negative status based on concordant results in at least three of the four confirmatory assays (indirect immunofluorescence, Western blot, radioimmunoprecipitation assay, and recombinant immunoblot). Of the 437 specimens, 168 (39%) were characterized as positive, 262 (61%) were characterized as negative, and 7 (2%) were judged inconclusive and excluded from the analysis. Sensitivity and specificity varied considerably: 88 to 100 and 60 to 100 percent, respectively. Overall, enzyme immunoassays (EIAs) performed better than the other screening assays. Four EIAs had both parameters higher than 99 percent. Of the four confirmatory assays, only the RIPA gave a 100 percent agreement with the final serologic status of the specimens. The sensitivities and specificities of at least four of the commercially available EIAs for Chagas disease are probably high enough to justify their use for single-assay screening of blood donations. Our data suggest that the majority of commercially available indirect hemagglutination assays should not be used for blood donor screening and that the RIPA could be considered a gold standard for evaluating the performance of other assays.
Resumo:
Culture conditions (pH, time, temperature, inoculum size, orbital agitation speed and substrate concentration) for an extracellular collagenase produced by Candida albicans URM3622 were studied using three experimental designs (one 2(6-2) fractionary factorial and two 2(3) full factorial). The analysis of the 2(6-2) fractionary design data indicated that agitation speed and substrate concentration had the most significant effect on collagenase production. Based on these results, two successive 2(3) full factorial design experiments were run in which the effects of substrate concentration, orbital agitation speed and pH were further studied. These two sets of experiments showed that all variables chosen were significant for the enzyme production, with the maximum collagenolytic activity of 6.8 +/- 0.4 U achieved at pH 7.0 with an orbital agitation speed of 160 rpm and 2% substrate concentration. Maximum collagenolytic activity was observed at pH 8.2 and 45 degrees C. The collagenase was stable within a pH range of 7.2-8.2 and over a temperature range of 28-45 degrees C. These results clearly indicate that C. albicans URM3622 is a potential resource for collagenase production and could be of interest for pharmaceutical, cosmetic and food industry. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports a method for the analysis of secondary metabolites stored in glandular trichomes, employing negative ion `chip-based` nanospray tandem mass spectrometry. The analyses of glandular trichomes from Lychnophora ericoides, a plant endemic to the Brazilian `cerrado` and used in traditional medicine as an anti-inflammatory and analgesic agent, led to the identification of five flavonoids (chrysin, pinocembrin, pinostrobin, pinobanksin and 3-O-acetylpinobanksin) by direct infusion of the extracts of glandular trichomes into the nanospray ionisation source. All the flavonoids have no oxidation at ring B, which resulted in a modification of the fragmentation pathways compared with that of the oxidised 3,4-dihydroflavonoids already described in the literature. The absence of the anti-inflammatory and antioxidant di-C-glucosylflavone vicenin-2, or any other flavonoid glycosides, in the glandular trichomes was also demonstrated. The use of the,`chip-based` nanospray QqTOF apparatus is a new fast and useful tool for the identification of secondary metabolites stored in the glandular trichomes, which can be useful for chemotaxonomic studies based on metabolites from glandular trichomes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
An enantioselective method using liquid-phase microextraction (LPME) followed by HPLC analysis was developed for the determination of oxybutynin (OXY) and its major metabolite N-desethyloxybutynin (DEO) in rat liver microsomal fraction. The LPME procedure was optimized using multifactorial experiments. Under the optimal extraction conditions, the mean recoveries were 61 and 55% for (R)-OXY and (S)-OXY, respectively. and 70 and 76% for (R)-DEO and (S)-DEO, respectively. The validated method was employed to an in vitro biotransformation study using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of OXY. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cylindrospermopsin (CYN) belongs to a group of toxins produced by several strains of freshwater cyanobacteria. It is a compact zwitterionic molecule composed of a uracil section and a tricyclic guanidinium portion with a primarily hepatotoxic effect. Using low multi-stage and high-resolution mass spectrometry, the gas-phase reactions of this toxin have been investigated. Our data show that collision-induced dissociation (CID) spectra of CYN are dominated by neutral losses, and three major initial fragmentation pathways are clearly distinguishable. Interestingly, comparative analysis of protonated and cationizated molecules showed a significant difference in the balance of the SO(3) and terminal ring elimination. These data indicate that the differential ion mobility of H(+), Li(+), Na(+) and K(+) leads to different fragmentation pathways, giving rise to mass spectra with different profiles. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Trypanosoma cruzi is the etiological agent of Chagas` disease, a pathogenesis that affects millions of people in Latin America. Here, we report the crystal structure of dihydroorotate dehydrogenase (DHODH) from T cruzi strain Y solved at 2.2 angstrom resolution. DHODH is a flavin mononucleotide containing enzyme, which catalyses the oxidation Of L-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. Genetic studies have shown that DHODH is essential for T cruzi survival, validating the idea that this enzyme can be considered an attractive target for the development of antichagasic drugs. In our work, a detailed analysis of T cruzi DHODH crystal structure has allowed us to suggest potential sites to be further exploited for the design of highly specific inhibitors through the technology of structure-based drug design. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A simple and rapid method, which involves liquid-phase microextraction (LPME) followed by HPLC analysis using Chiralpak AD column and UV detection, was developed for the enantioselective determination of mefloquine in plasma samples. Several factors that influence the efficiency of three-phase LPME were investigated and optimized. Under the optimal extraction conditions, the mean recoveries were 33.2 and 35.0% for (-)-(SR-)-mefloquine and (+)-(RS)-mefloquine, respectively. The method was linear over 50-1500 ng/ml range. Within-day and between-day assay precision and accuracy were below 15% for both enantiomers at concentrations of 150, 600 and 1200 ng/ml. Furthermore, no racemization or degradation were seen with the method described. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.
Resumo:
The purpose of this study was to develop a method for the stereoselective analysis of thioridazine-2-sulfoxide (THD-2-SO) and thioridazine-5-sulfoxide (THD-5-SO) in culture medium and to study the biotransformation of rac-thioridazine (THD) by some endophytic fungi. The simultaneous resolution of THD-2-SO and THD-5-SO diastereoisomers was performed on a CHIRALPAK(R) AS column using a mobile phase of hexane: ethanol: methanol (92:6:2, v/v/v) + 0.5% diethylamine; UV detection was carried out at 262 nm. Diethyl ether was used as extractor solvent. The validated method was used to evaluate the biotransformation of THD by 12 endophytic fungi isolated from Tithonia diversifolia, Viguiera arenaria and Viguiera robusta. Among the 12 fungi evaluated, 4 of them deserve prominence for presenting an evidenced stereoselective biotransformation potential: Phomopsis sp. (TD2) presented greater mono-2-sulfoxidation to the form (S)-(SE) (12.1%); Glomerella cingulata (VA1) presented greater mono-5-sulfoxidation to the forms (S)-(SE) + (R)-(FE) (10.5%); Diaporthe phaseolorum (VR4) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(FE) (84.4% and 82.5%, respectively) and Aspergillus fumigatus (VR12) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(SE) (31.5% and 34.4%, respectively). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of Clr has been observed to occur concomitantly with deficiency in Cls and 9 out of 15 reported cases presented systemic lupus erythernatosus (SLE). Here, we describe a family in which all four children are deficient in Cls but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children`s sera. Cls was undetectable, while in the parents` sera it was lower than in the normal controls. The levels of Clr observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of Cls synthesis was observed in the patients` fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the Cls cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of Cls mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3` splice site within intron I which increases the size of exon 2 by 87 nucleotides. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Lychnophora ericoides Mart. (Asteraceae, Vernonieae) is a plant, endemic to Brazil, with occurrence restricted to the ""cerrado"" biome. Traditional medicine employs alcoholic and aqueous-alcoholic preparations of leaves from this species for the treatment of wounds, inflammation, and pain. Furthermore, leaves of L. ericoides are also widely used as flavorings for the Brazilian traditional spirit ""cachaca"". A method has been developed for the extraction and HPLC-DAD analysis of the secondary metabolites of L. ericoides leaves. This analytical method was validated with 11 secondary metabolites chosen to represent the different classes and polarities of secondary metabolites occurring in L. ericoides leaves, and good responses were obtained for each validation parameter analyzed. The same HPLC analytical method was also employed for online secondary metabolite identification by HPLC-DAD-MS and HPLC-DAD-MS/MS, leading to the identification of di-C-glucosylflavones, coumaroylglucosylflavonols, flavone, flavanones, flavonols, chalcones, goyazensolide, and eremantholide-type sesquiterpene lactones and positional isomeric series of chlorogenic acids possessing caffeic and/or ferulic moieties. Among the 52 chromatographic peaks observed, 36 were fully identified and 8 were attributed to compounds belonging to series of caffeoylferuloylquinic and diferuloylquinic acids that could not be individualized from each other.