806 resultados para electroluminescent polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have presented and demonstrated efficient mode locking of erbium doped fiber laser using graphene carboxymethylcellulose (CMC) polymer composites. The laser gives out soliton pulse with duration of ∼837 fs, and 0.19 nJ pulse energy. © 2014 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a newly designed polymer light-emitting diode with a bandwidth of ∼350 kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10 Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLGA is a biodegradable polymer utilised widely in pharmaceutical research for the encapsulation of a wide range of drugs as nano particulate systems. This study investigates the impact of rotary ball milling on the physical properties of PLGA and its influence on nanoparticle formation prepared using the solvent displacement technique. By applying mechanical stress to the polymer and altering its physical appearance and molecular weight, the loading of lansoprazole within the nanoparticles was increased to 96%, with a reduction in particle size. The results indicate that rotary ball milling significantly reduces particle size, increases lansoprazole loading and improves the release profile for lansoprazole loaded PLGA nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure poly(lactide-co-glycolide) and polystyrene surfaces are not very suitable to support cell adhesion/ spreading owing to their hydrophobic nature and low surface energy. The interior surfaces of large porous 3D scaffolds were modified and activated using radio-frequency, low-pressure air plasma. An increase in the wettability of the surface was observed after exposure to air plasma, as indicated by the decrease in the contact angles of the wet porous system. The surface composition of the plasma-treated polymers was studied using X-ray photoelectron spectroscopy. pH-dependent zeta-potential measurements confirm the presence of an increased number of functional groups. However, the plasma-treated surfaces have a less acidic character than the original polymer surfaces as seen by a shift in their isoelectric point. Zeta-potential, as well as contact angle measurements, on 3D scaffolds confirm that plasma treatment is a useful tool to modify the surface properties throughout the interior of large scaffolds. © 2008 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter experimentally demonstrates a visible light communication system using a 350-kHz polymer lightemitting diode operating at a total bit rate of 19 Mb/s with a bit error rate (BER) of 10-6and 20 Mb/s at the forward error correction limit for the first time. This represents a remarkable net data rate gain of ~55 times. The modulation format adopted is ON-OFF keying in conjunction with an artificial neural network classifier implemented as an equalizer. The number of neurons used in the experiment is varied from the set N = {5, 10, 20, 30, 40} with 40 neurons offering the best performance at 19 Mb/s and the BER of 10-6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 μm for PLGA and 73 μm for PS foams. (Figure Presented) © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report on investigations of some of the factors that have a bearing on the reliability and repeatability of polymer fibre Bragg gratings. The main issues discussed are the fibre preform composition, the fibre drawing conditions and the thermal history of the fibre grating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first demonstration of a tunable FBG device in POF utilizing thin-film resistive heater deposited on the fiber. A wavelength shift of 2nm, wavelength/power coefficient of -13.4pm/mW and T = 1.7s-1 are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present what is to our knowledge the first demonstration of a tunable fiber Bragg grating device in polymer optical fiber that utilizes a thin-film resistive heater deposited on the surface of the fiber. The polymer fiber was coated via photochemical deposition of a Pd/Cu metallic layer with a procedure induced by vacuum-ultraviolet radiation at room temperature. The resulting device, when wavelength tuned via joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of-13.4 pm/mW, and a time constant of 1.7 s-1. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental measurements of the strain and temperature sensitivity of the optical phase in a singlemode polymer optical fibre. These values were obtained by measuring optical path length change using a Mach-Zender interferometer.