948 resultados para electrochemical impedance spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dielectric behavior of polyacrylonitrile derived carbon nanofibers formed at different carbonization temperatures was investigated using impedance spectroscopy. The impedance data are presented in the form of Cole-Cole plots and four equivalent electrical circuits are derived. It is found that by increasing carbonization temperature from 500 to 800 °C, a strong capacitive element in the parallel equivalent circuit is transformed into an inductive element, while the contact resistance and parallel resistance are significantly decreased. Along with the morphological and chemical structural evolution, respectively witnessed by scanning electron microscopy and Raman spectroscopy, the dielectric transition deduced from the transformation of electrical circuits can be correlated to the proposed microstructural changes of polyacrylonitrile derived carbon nanofibers and the interaction/interference among them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduction in the useful-service life of reinforced concrete construction in the Arabian Gulf is attributed to reinforcement corrosion. While this phenomenon is primarily related to chloride ions, the concomitant pressure of sulfate salts may accelerate the deterioration process. Another factor which might influence reinforcement corrosion is the elevated ambient temperature. While few studies have been conducted to evaluate the individual effect of sulfate contamination and temperature on chloride binding and reinforcement corrosion, the synergistic effect of these factors on concrete durability, viz.-a-viz., reinforcement corrosion, needs to be evaluated. Further, the environmental conditions of the Arabian Gulf are also conducive for accelerated carbonation. However, no data are available on the concomitant effect of chloride-sulfate contamination and elevated temperature on the carbonation behaviour of plain and blended cements.This study was conducted to evaluate the conjoint effect of chloride-sulfate contamination and temperature on the pore solution chemistry and reinforcement corrosion. The effect of chloride-sulfate contamination and elevated temperature on carbonation in plain and blended cements was also investigated. Pore solution extraction and analysis, X-ray diffraction, differential thermal analysis, scanning electron microscopy, DC linear polarization resistance and AC impedance spectroscopy techniques were utilized to study the effect of experimental parameters on chloride binding, reinforcement corrosion and carbonation.The results indicated that the concomitant presence of chloride and sulfate salts and temperature significantly influences the durability performance of concrete by: (i) decreasing the chloride binding, (ii) increasing reinforcement corrosion, and (iii) accelerating the carbonation process. To avoid such deterioration, it is advisable to minimize both chloride and sulfate contamination contributed by the mixture ingredients. Due to the known harmful role of sulfate ions in decreasing the chloride binding and increasing reinforcement corrosion, limits on allowable sulfate contamination in concrete should also be established.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanometer-scale diamonds formed using a detonation process are an interesting class of diamond materials. Commercially supplied material is highly aggregated with ~ 5 nm diamond crystals forming particles with micron sizes. Previous models have suggested that nondiamond carbon is incorporated between the crystals, which would reduce the electrical and chemical usefulness of this form of diamond. However, using impedance spectroscopy we have shown that at temperatures below 350?°C the form of detonation nanodiamond being studied is a near to ideal dielectric, implying a full sp3 form. At temperatures above this the surfaces of the diamond crystals may support some nondiamond carbon

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impedance spectroscopy has been used to investigate conductivity within boron-doped diamond in an intrinsic/delta-doped/intrinsic (i-d-i) multilayer structure. For a 5 nm thick delta layer, three conduction pathways are observed, which can be assigned to transport within the delta layer and to two differing conduction paths in the i-layers adjoining the delta layer. For transport in the i-layers, thermal trapping/detrapping processes can be observed, and only at the highest temperature investigated (673 K) can transport due to a single conduction process be seen. Impedance spectroscopy is an ideal nondestructive tool for investigating the electrical characteristics of complex diamond structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presented a detailed research work on diamond materials. Chapter 1 is an overall introduction of the thesis. In the Chapter 2, the literature review on the physical, chemical, optical, mechanical, as well as other properties of diamond materials are summarised. Followed by this chapter, several advanced diamond growth and characterisation techniques used in experimental work are also introduced. Then, the successful installation and applications of chemical vapour deposition system was demonstrated in Chapter 4. Diamond growth on a variety of different substrates has been investigated such as on silicon, diamond-like carbon or silica fibres. In Chapter 5, the single crystalline diamond substrate was used as the substrate to perform femtosecond laser inscription. The results proved the potentially feasibility of this technique, which could be utilised in fabricating future biochemistry microfluidic channels on diamond substrates. In Chapter 6, the hydrogen-terminated nanodiamond powder was studied using impedance spectroscopy. Its intrinsic electrical properties and its thermal stability were presented and analysed in details. As the first PhD student within Nanoscience Research Group at Aston, my initial research work was focused on the installation and testing of the microwave plasma enhanced chemical vapour deposition system (MPECVD), which will be beneficial to all the future researchers in the group. The fundamental of the on MPECVD system will be introduced in details. After optimisation of the growth parameters, the uniform diamond deposition has been achieved with a good surface coverage and uniformity. Furthermore, one of the most significant contributions of this work is the successful pattern inscription on diamond substrates by femtosecond laser system. Previous research of femtosecond laser inscription on diamond was simple lines or dots, with little characterisation techniques were used. In my research work, the femtosecond laser has been successfully used to inscribe patterns on diamond substrate and fully characterisation techniques, e.g. by SEM, Raman, XPS, as well as AFM, have been carried out. After the femtosecond laser inscription, the depth of microfluidic channels on diamond film has been found to be 300~400 nm, with a graphitic layer thickness of 165~190 nm. Another important outcome of this work is the first time to characterise the electrical properties of hydrogenterminated nanodiamond with impedance spectroscopy. Based on the experimental evaluation and mathematic fitting, the resistance of hydrogen-terminated nanodiamond reduced to 0.25 MO, which were four orders of magnitude lower than untreated nanodiamond. Meanwhile, a theoretical equivalent circuit has been proposed to fit the results. Furthermore, the hydrogenterminated nanodiamond samples were annealed at different temperature to study its thermal stability. The XPS and FTIR results indicate that hydrogen-terminated nanodiamond will start to oxidize over 100ºC and the C-H bonds can survive up to 400ºC. This research work reports the fundamental electrical properties of hydrogen-terminated nanodiamond, which can be used in future applications in physical or chemical area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon is a versatile material which is composed of different allotropes, and also come in with different structures. Carbon nanofibres (CNFs) is one dimensional carbon nanomaterials, which have exhibited superior mechanical properties, great specific area, good electrical conductivity, good biocompatibility, and ease of modification. In addition to the lower cost associated to compare with carbon nanotubes (CNTs), CNFs have been attracted in numerous applications, such as reinforcement materials, filtrations, Li-ion battery, supercapacitor as well as tissue engineering, just to list a few. Therefore, it is a great deal to understand the relationship between the fabrication conditions and the characteristics of the resulted CNFs. In this project, electrospun PAN NFs were used as precursor material to fabricate carbon nanofibres. In order to produce CNFs with good morphology, the processing parameters of PAN nanofibres by electrospinning was optimized toward to the morphology at solution concentration of 12 wt%. The optimized processing parameters at given concentration were 16 kV, 14 cm and 1.5 mL/h, which led to the formation of PAN NFs with average fibre diameter of approximately 260 nm. Along with the effect of processing parameter study, the effect of concentration on the morphology was also carried out at optimized processing parameters. It was found that by increasing concentration of PAN solution from 2 to 16%, the resulted PAN transformed from beads only, to beaded fibres and finally to smooth fibres. With further increasing concentration the morphology of smooth fibres remain with increase in the fibre diameter. Electrospun PAN NFs with average fibre of 306 nm was selected to be converted into CNFs by using standard heating procedures, stabilisation in air at 280 °C and carbonization in N2. The effect of carbonization temperature ranging from 500 to 1000 °C was investigated, by using SEM, FTIR, Raman, and Impedance spectroscopy. With increasing carbonization temperature from 500 to 1000 °C, the diameter of NFs was decreased from 260 to 187, associated with loss of almost all functional groups of NFs. It was indicated by Raman results, that the graphitic crystallite size was increased from 2.62 to 5.24 nm, and the activation energy obtained for this growth was 7570 J/mol. Furthermore, impedance results (i.e. Cole-Cole plot) revealed that the electrical characteristic of CNFs transitioned from being insulating to electrically conducting in nature, suggested by the different electrical circuits extracted from Cole-Cole plots with carbonization temperature from 500 to 800 °C. The carbonization on PAN NFs with diameter of ~431nm was carried out by using novel route, microwave plasma enhance chemical vapour deposition (MPECVD) process. To compare with carbonized PAN NFs by using conventional route, MPECVD was not only able to facilitate carbonization process, but more interestingly can form carbon nanowalls (CNWs) grown on the surfaces of carbonized PAN NFs. Suggested by the unique morphology, the potential applications for the resulted carbon fibrous hybrid materials are supercapacitor electrode material, filtrations, and etc., The method developed in this project required one step less, compared with other literature. Therefore, using MPECVD on stabilised PAN NFs is proposed as economical, and straightforward approach towards mass production of carbon fibrous hybrid materials containing CNWs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite NiO-C0.9Gd0.1O1.95 (NiO-GDC), one of the materials most used for the manufacture of anodes of Cells Solid Oxide Fuel (SOFC) currently, were obtained by a chemical route which consists in mixing the precursor solution of NiO and CGO phases obtained previously by the Pechini method. The nanopowders as-obtained were characterized by thermal analysis techniques (thermogravimetry and Differential Scanning Calorimetry) and calcined materials were evaluated by X-ray diffraction (XRD). Samples sintered between 1400 and 1500 ° C for 4 h were characterized by Archimedes method. The effects of the composition on the microstructure and electrical properties (conductivity and activation energy) of the composites sintered at 1500 ° C were investigated by electron microscopy and impedance spectroscopy (between 300 and 650 ° C in air). The refinement of the XRD data indicated that the powders are ultrafine and the crystallite size of the CGO phase decreases with increasing content of NiO. Similarly, the crystallite of the NiO phase tends to decrease with increasing concentration of CGO, especially above 50 wt % CGO. Analysis by Archimedes shows a variation in relative density due to the NiO content. Densities above 95% were obtained in samples containing from 50 wt % NiO and sintered between 1450 and 1500 °C. The results of microscopy and impedance spectroscopy indicate that from 30-40 wt.% NiO there is an increase in the number of contacts NiO - NiO, activating the electronic conduction mechanism which governs the process of conducting at low temperatures (300 - 500 °C). On the other hand, with increasing the measuring temperature the mobility of oxygen vacancies becomes larger than that of the electronic holes of NiO, as a result, the high temperature conductivity (500-650 ° C) in composites containing up to 30-40 wt.% of NiO is lower than that of CGO. Variations in activation energy confirm change of conduction mechanism with the increase of the NiO content. The composite containing 50 wt. % of each phase shows conductivity of 19 mS/cm at 650 °C (slightly higher than 13 mS/cm found for CGO) and activation energy of 0.49 eV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material with potential to replace lead zirconate titanate (PZT),1 however high leakage conductivity for the material has been widely reported.2 Through a combination of Impedance Spectroscopy (IS), O2- ion transference (EMF) number experiments and O18 tracer diffusion measurements, combined with Time-of-flight Secondary Ion Mass Spectrometry (TOFSIMS), it was identified that this leakage conductivity was due to oxygen ion conductivity. The volatilization of bismuth during synthesis, causing oxygen vacancies, is believed to be responsible for the leakage conductivity.3 The oxide-ion conductivity, when doped with magnesium, exceeds that of yttria-stabilized zirconia (YSZ) at ~500 °C,3 making it a potential electrolyte material for Intermediate Temperature Solid Oxide Cells (ITSOCs). Figure 1 shows the comparison of bulk oxide ion conductivity between 2 at.% Mg-doped NBT and other known oxide ion conductors.

As part of the UK wide £5.7m 4CU project, research has concentrated on trying to develop NBT for use in Intermediate Temperature Solid Oxide Cells (ITSOCS). With the aim of achieving mixed ionic and electronic conduction, transition metals were chemically doped on to the Ti-site. A range of experimental techniques was used to characterize the materials aimed at investigating both conductivity and material structure (Scanning Electron Microscopy (SEM), IS, X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)). The potential for NBT as an ITSOC material, as well as the challenges of developing the material, will be discussed.

(1) Takenaka T. et al. Jpn. J. Appl. Phys 1999, 30, 2236.

(2) Hiruma Y. et al. J. Appl. Phys 2009, 105, 084112.

(3) Li. M. et al. Nature Materials 2013, 13, 31.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho incidiu sobre uma família de eletrólitos sólidos cerâmicos à base de óxido de zircónio, incluindo ainda óxido de magnésio como dopante, normalmente designados de Mg-PSZ (zircónia parcialmente estabilizada com magnésia). Dependendo da composição e condições de processamento (perfil de sinterização) estes materiais podem exibir interessantes combinações de propriedades mecânicas, térmicas e elétricas que permitem a sua utilização no fabrico de sensores de oxigénio para metais fundidos. O uso de sensores é hoje essencial numa lógica de controlo de processo e eficiência energética. No sentido de tentar compreender como influenciar estas propriedades, exploraram-se diversos níveis de dopante (de 2,5 até 10 mol%, com acréscimos de 2,5 mol% de MgO), diversas velocidades de arrefecimento (2, 3 e 5 °C.min-1) a partir de uma condição igual de patamar de sinterização (1700 °C, 3 horas), e ainda alguns ciclos de sinterização mais complexos, com patamares intermédios inseridos no processo de arrefecimento, com o objetivo de tentar alterar os processos de nucleação e crescimento de fases. Na realidade, as transformações de fases a que este tipo de materiais se encontra sujeito (cúbica  tetragonal  monoclínica, para temperaturas decrescentes), possuem diferentes velocidades características (uma é difusiva a outra displaciva), permitindo este tipo de condicionamento. Os materiais obtidos foram alvo de caracterização estrutural e microestrutural, complementada por um conjunto de outras técnicas de caracterização física como a espectroscopia de impedância, dilatometria e dureza. Os resultados obtidos confirmam a complexidade das relações entre processamento e comportamento mas permitiram identificar condições de potencial interesse prático para as aplicações em vista.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação teve como objetivo a produção e caracterização física de fibras e nanotubos de BiFeO3 e FeNbO4. Para o desenvolvimento destes materiais utilizou-se a técnica de fusão com laser (LFZ), o método sol-gel (Pechini) e o método de poros absorventes. As amostras obtidas foram sujeitas a uma caracterização estrutural por difração de raios-X e espetroscopia de Raman, morfológica por microscopia electrónica de varrimento e elétrica por medidas de constante dielétrica. Os resultados obtidos com a técnica de difração de raios-X mostraram que o gel com tratamento a 750 ºC é polifásico. Para conseguir produzir nanotubos escolheu-se o LaCoO3 como material alternativo. Usando a técnica de fusão de zona com laser (LFZ) obtiveram-se fibras de BiFeO3, FeNbO4 e compósitos de BiFeO3+FeNbO4. Com esta técnica foram crescidas fibras a várias velocidades (5, 10, 25, 50, 100 e 200 mm/h), tendo os resultados obtidos com a difração de raios-X evidenciado que todas as amostras obtidas são polifásicas, sendo a amostra de 10 mm/h para o BiFeO3 e a de 5 mm/h para o FeNbO4 as que apresentam melhores propriedades. As amostras de 5 mm/h de todos os compósitos são aquelas que possuem menor quantidade de segundas fases e portanto foram alvo de estudo mais aprofundado. A caracterização dielétrica permitiu verificar que todas as amostras apresentam fenómenos de relaxação dielétrica. Verifica-se também que para o BiFeO3 a constante dielétrica é superior na amostra crescida à velocidade de 10 mm/h, para o FeNbO4 é superior na amostra crescida a 5 mm/h e nos compósitos a amostra com 75% de BiFeO3 e 25% de FeNbO4 apresenta um comportamento diferente das restantes, eventualmente devido à sua microestrutura singular.