892 resultados para electrical engineering and electronics
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper presents a new low-complexity multicarrier modulation (MCM) technique based on lattices which achieves a peak-to-average power ratio (PAR) as low as three. The scheme can be viewed as a drop in replacement for the discrete multitone (DMT) modulation of an asymmetric digital subscriber line modem. We show that the lattice-MCM retains many of the attractive features of sinusoidal-MCM, and does so with lower implementation complexity, O(N), compared with DMT, which requires O(N log N) operations. We also present techniques for narrowband interference rejection and power profiling. Simulation studies confirm that performance of the lattice-MCM is superior, even compared with recent techniques for PAR reduction in DMT.
Resumo:
This letter describes a new idea of increasing operational bandwidth of a compact planar inverted F antenna (PIFA) by introducing open-end slots in the ground plane under the radiating patch. The slots are not in the way of active modules of a wireless transceiver and thus the proposed antenna size reduction method is attractive from the point of view of practical implementation.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a converter-per-panel approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cuk converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cuk converters are always at an efficiency or alternatively cost disadvantage.
Resumo:
Enterprise systems interoperability (ESI) is an important topic for business currently. This situation is evidenced, at least in part, by the number and extent of potential candidate protocols for such process interoperation, viz., ebXML, BPML, BPEL, and WSCI. Wide-ranging support for each of these candidate standards already exists. However, despite broad acceptance, a sound theoretical evaluation of these approaches has not yet been provided. We use the Bunge-Wand-Weber (BWW) models, in particular, the representation model, to provide the basis for such a theoretical evaluation. We, and other researchers, have shown the usefulness of the representation model for analyzing, evaluating, and engineering techniques in the areas of traditional and structured systems analysis, object-oriented modeling, and process modeling. In this work, we address the question, what are the potential semantic weaknesses of using ebXML alone for process interoperation between enterprise systems? We find that users will lack important implementation information because of representational deficiencies; due to ontological redundancy, the complexity of the specification is unnecessarily increased; and, users of the specification will have to bring in extra-model knowledge to understand constructs in the specification due to instances of ontological excess.
Resumo:
Control Engineering is an essential part of university electrical engineering education. Normally, a control course requires considerable mathematical as well as engineering knowledge and is consequently regarded as a difficult course by many undergraduate students. From the academic point of view, how to help the students to improve their learning of the control engineering knowledge is therefore an important task which requires careful planning and innovative teaching methods. Traditionally, the didactic teaching approach has been used to teach the students the concepts needed to solve control problems. This approach is commonly adopted in many mathematics intensive courses; however it generally lacks reflection from the students to improve their learning. This paper addresses the practice of action learning and context-based learning models in teaching university control courses. This context-based approach has been practised in teaching several control engineering courses in a university with promising results, particularly in view of student learning performances.
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The performance of the maximum ratio combining method for the combining of antenna-diversity signals in correlated Rician-fading channels is rigorously studied. The distribution function of the normalized signal-to-noise ratio (SNR) is expanded in terms of a power series and calculated numerically. This power series can easily take into account the signal correlations and antenna gains and can be applied to any number of receiving antennas. An application of the method to dual-antenna diversity systems produces useful distribution curves for the normalized SNR which can be used to find the diversity gain. It is revealed that signal correlation in Rician-fading channels helps to increase the diversity gain rather than to decrease it as in the Rayleigh fading channels. It is also shown that with a relative strong direct signal component, the diversity gain can be much higher than that without a direct signal component.
Resumo:
This paper introduces a method for power system modeling during the earth fault. The possibility of using this method for selection and adjustment of earth fault protection is pointed out. The paper also contains the comparison of results achieved by simulation with the experimental measurements.