942 resultados para dynamic visual noise
Resumo:
By virtue of its widespread afferent projections, perirhinal cortex is thought to bind polymodal information into abstract object-level representations. Consistent with this proposal, deficits in cross-modal integration have been reported after perirhinal lesions in nonhuman primates. It is therefore surprising that imaging studies of humans have not observed perirhinal activation during visual-tactile object matching. Critically, however, these studies did not differentiate between congruent and incongruent trials. This is important because successful integration can only occur when polymodal information indicates a single object (congruent) rather than different objects (incongruent). We scanned neurologically intact individuals using functional magnetic resonance imaging (fMRI) while they matched shapes. We found higher perirhinal activation bilaterally for cross-modal (visual-tactile) than unimodal (visual-visual or tactile-tactile) matching, but only when visual and tactile attributes were congruent. Our results demonstrate that the human perirhinal cortex is involved in cross-modal, visual-tactile, integration and, thus, indicate a functional homology between human and monkey perirhinal cortices.
Resumo:
An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.
Resumo:
We consider the following problem: a user stores encrypted documents on an untrusted server, and wishes to retrieve all documents containing some keywords without any loss of data confidentiality. Conjunctive keyword searches on encrypted data have been studied by numerous researchers over the past few years, and all existing schemes use keyword fields as compulsory information. This however is impractical for many applications. In this paper, we propose a scheme of keyword field-free conjunctive keyword searches on encrypted data, which affirmatively answers an open problem asked by Golle et al. at ACNS 2004. Furthermore, the proposed scheme is extended to the dynamic group setting. Security analysis of our constructions is given in the paper.
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.
Resumo:
In the electricity market environment, load-serving entities (LSEs) will inevitably face risks in purchasing electricity because there are a plethora of uncertainties involved. To maximize profits and minimize risks, LSEs need to develop an optimal strategy to reasonably allocate the purchased electricity amount in different electricity markets such as the spot market, bilateral contract market, and options market. Because risks originate from uncertainties, an approach is presented to address the risk evaluation problem by the combined use of the lower partial moment and information entropy (LPME). The lower partial moment is used to measure the amount and probability of the loss, whereas the information entropy is used to represent the uncertainty of the loss. Electricity purchasing is a repeated procedure; therefore, the model presented represents a dynamic strategy. Under the chance-constrained programming framework, the developed optimization model minimizes the risk of the electricity purchasing portfolio in different markets because the actual profit of the LSE concerned is not less than the specified target under a required confidence level. Then, the particle swarm optimization (PSO) algorithm is employed to solve the optimization model. Finally, a sample example is used to illustrate the basic features of the developed model and method.
Resumo:
Majority of the current research on the mounting system has emphasised on the low/medium power engine, rare work has been reported for the high-speed and heavy-duty engine, the vibration characteristics of which exhibits significantly increased complexity and uncertainty. In this work, a general dynamics model was firstly established to describe the dynamic properties of a mounting system with various numbers of mounts. Then, this model was employed for the optimization of the mounting system. A modified Powell conjugate direction method was developed to improve the optimization efficiency. Basing on the optimization results obtained from the theoretical model, a mounting system was constructed for a V6 diesel engine. The experimental measurement of the vibration intensity of the mounting systems shows excellent agreement with the theoretical calculations, indicating the validity of the model. This dynamics model opens a new avenue in assessing and designing the mounting system for a high-speed and heavy-duty engine. On the other hand, the delineated dynamics model, and the optimization algorithm should find wide applications for other mounting systems, such as the power transmission system which usually has various uncertain mounts.
Resumo:
We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.
Resumo:
In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.
Resumo:
In this chapter Knight & Dooley discuss arts learning and issues of educational authenticity via children’s engagement with iPads (O’Mara & Laidlaw 2011; Shifflet, Toledo & Mattoon 2012). The chapter begins by considering common perceptions about art and how these popular beliefs and conditions affect and influence how children’s art is defined and valorized. The art produced by children using iPads is then discussed through key observations and reflections, and the chapter concludes with some recommendations when selecting apps for making art.
Resumo:
In design studio, sketching or visual thinking is part of processes that assist students to achieve final design solutions. At QUT’s First and Third Year industrial design studio classes we engage in a variety of teaching pedagogies from which we identify ‘Concept Bombs’ as an instrumental in the development of students’ visual thinking and reflective design process, and also as a vehicle to foster positive student engagement. Our ‘formula’: Concept Bombs are 20 minute design tasks focusing on rapid development of initial concept designs and free-hand sketching. Our experience and surveys tell us that students value intensive studio activities especially when combined with timely assessment and feedback. While conventional longer-duration design projects are essential for allowing students to engage with the full depth and complexity of the design process, short and intensive design activities introduce variety to the learning experience and enhance student engagement. This paper presents a comparative analysis of First and Third Year students’ Concept Bomb sketches to describe the types of design knowledge embedded in them, a discussion of limitations and opportunities of this pedagogical technique, as well as considerations for future development of studio based tasks of this kind as design pedagogies in the midst of current university education trends.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.
Resumo:
This was a catalogue essay for the emerging Brisbane artist Sarah Byrne's exhibition Trenchmouth at MetroArts from 31st October until 21st November 2009. The essay contextualised her practice in the history of experimental soundart and discussed her methods of practice and approach to sound from the postion of a multi-discplinary artist.The essay also discussed the way in which her practice engages with and recontextualises camp, trash, and lo-fi aspects of popular culture
Resumo:
A method for calculating visual odometry for ground vehicles with car-like kinematic motion constraints similar to Ackerman's steering model is presented. By taking advantage of this non-holonomic driving constraint we show a simple and practical solution to the odometry calculation by clever placement of a single camera. The method has been implemented successfully on a large industrial forklift and a Toyota Prado SUV. Results from our industrial test site is presented demonstrating the applicability of this method as a replacement for wheel encoder-based odometry for these vehicles.