869 resultados para dye aggregation
Resumo:
The molecular basis for heparin-induced thrombocytopenia (HIT), a relatively common complication of heparin therapy, is not yet fully understood. We found that pretreatment of platelets with AR-C66096 (formerly FPL 66096), a specific platelet adenosine diphosphate (ADP) receptor antagonist, at a concentration of 100 to 200 nmol/L that blocked ADP-dependent platelet aggregation, resulted in complete loss of platelet aggregation responses to HIT sera. AR-C66096 also totally inhibited HIT serum-induced dense granule release, as judged by measurement of adenosine triphosphate (ATP) release. Apyrase, added to platelets at a concentration that had only minor effects on thrombin- or arachidonic acid-induced aggregation, also blocked completely HIT serum-induced platelet aggregation. Furthermore, AR-C66096 inhibited platelet aggregation and ATP release induced by cross-linking Fc gamma RIIA with specific antibodies. These data show that released ADP and the platelet ADP receptor play a pivotal role in HIT serum-induced platelet activation/aggregation. The thromboxane receptor inhibitor, Daltroban, had no effect on HIT serum-induced platelet activation whereas GPIIb-IIIa antagonists blocked platelet aggregation but had only a moderate effect on HIT serum-induced dense granule release. Pretreatment of platelets with chondroitinases but not with heparinases resulted in concentration dependent inhibition of HIT serum-induced platelet aggregation. These novel data relating to the mechanism of platelet activation induced by HIT sera suggest that the possibility should be examined that ADP receptor antagonists or compounds that inhibit ADP release may be effective as therapeutic agents for the prevention or treatment of complications associated with heparin therapy.
Resumo:
Mucetin (Trimeresurus mucrosquamatus venom activator, TMVA) is a potent platelet activator purified from Chinese habu (Trimeresurus mucrosquamatus) venom. It belongs to the snake venom heterodimeric C-type lectin family and exists in several multimeric forms. We now show that binding to platelet glycoprotein (GP) Ib is involved in mucetin-induced platelet aggregation. Antibodies against GPIb as well as the GPIb-blocking C-type lectin echicetin inhibited mucetin-induced platelet aggregation. Binding of GPIb was confirmed by affinity chromatography and Western blotting. Antibodies against GPVI inhibited convulxin- but not mucetin-induced aggregation. Signalling by mucetin involved rapid tyrosine phosphorylation of a number of proteins including Syk, Src, LAT and PLC gamma 2. Mucetin-induced phosphorylation of the Fc gamma chain of platelet was greatly promoted by inhibition of alpha(IIb)beta(3) by the peptidomimetic EMD 132338, suggesting that phosphatases downstream of alpha(IIb)beta(3) activation are involved in dephosphorylation of Fc gamma. Unlike other multimeric snake C-type lectins that act via GPIb and only agglutinate platelets, mucetin activates alpha(IIb)beta(3). Inhibition of alpha(IIb)beta(3) strongly reduced the aggregation response to mucetin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in mucetin-induced platelet aggregation. Apyrase and aspirin also inhibit platelet aggregation induced by mucetin, suggesting that ADP and thromboxane A2 are involved in autocrine feedback. Sequence and structural comparison with closely related members of this protein family point to features that may be responsible for the functional differences.
Resumo:
BACKGROUND AND OBJECTIVE: To investigate whether preemptive administered lornoxicam changes perioperative platelet function during thoracic surgery. METHODS: A total of 20 patients scheduled for elective thoracic surgery were randomly assigned to receive either lornoxicam (16 mg, i.v.; n = 10) or placebo (n = 10) preoperatively. All patients underwent treatment of solitary lung metastasis and denied any antiplatelet medication within the past 2 weeks. Blood samples were drawn via an arterial catheter directly into silicone-coated Vacutainer tubes containing 0.5 mL of 0.129 M buffered sodium citrate 3.8% before, 15 min, 4 h and 8 h after the study medication was administered. Platelet aggregation curves were obtained by whole blood electrical impedance aggregometry (Chrono Log). RESULTS: Platelet aggregation was significantly reduced 15 min, 4 h and 8 h after lornoxicam administration compared to placebo (P < 0.05) for collagen, adenosine diphosphate and arachidonic acid as trigger substances. Adenosine diphosphate-induced platelet aggregation decreased by 85% 15 min after lornoxicam administration, and remained impaired for 8 h. CONCLUSION: Platelet aggregation assays are impaired for at least 8 h after lornoxicam application. Therefore perioperative analgesia by use of lornoxicam should be carefully administered under consideration of subsequent platelet dysfunction.
Resumo:
Titanium oxide is an important semiconductor, which is widely applied for solar cells. In this research, titanium oxide nanotube arrays were synthesized by anodization of Ti foil in the electrolyte composed of ethylene glycol containing 2 vol % H2O and 0.3 wt % NH4F. The voltages of 40V-50V were employed for the anodizing process. Pore diameters and lengths of the TiO2 nanotubes were evaluated by field emission scanning electron microscope (FESEM). The obtained highly-ordered titanium nanotube arrays were exploited to fabricate photoelectrode for the Dye-sensitized solar cells (DSSCS). The TiO2 nanotubes based DSSCS exhibited an excellent performance with a high short circuit current and open circuit voltage as well as a good power conversion efficiency. Those can be attributed to the high surface area and one dimensional structure of TiO2 nanotubes, which could hold a large amount of dyes to absorb light and help electron percolation process to hinder the recombination during the electrons diffusion in the electrolyte.
Resumo:
Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.
Resumo:
Aggregation-induced emission (AIE) was studied by hybridization of dialkynyl-tetraphenylethylene (DATPE) modified DNA strands. Molecular aggregation and fluorescence of DATPEs are controlled by duplex formation.