937 resultados para dry gel
Resumo:
The aim of this study was to analyze, under scanning electron microscopy (SEM), the morphologic characteristics of root surfaces after application of CarisolvTM gel in association with scaling and root planing (SRP). Sixty periodontally compromised extracted human teeth were randomly assigned to 6 groups: 1) SRP alone; 2) passive topical application of CarisolvTM + SRP; 3) active topical application of CarisolvTM + SRP; 4) multiple applications of CarisolvTM + SRP; 5) SRP + 24% EDTA; 6) topical application of CarisolvTM + SRP + 24% EDTA. CarisolvTM gel was applied to root surfaces for 30 s, followed by scaling and root planing, consisting of 50 strokes with Gracey curettes in an apical-coronal direction, parallel to the long axis of the tooth. The only exception was group 4, in which the roots were instrumented until a smooth, hard and glass-like surface was achieved. All specimens were further analyzed by SEM. The results showed that the treatment with CarisolvTM caused significant changes in root surface morphology of periodontally compromised teeth only when the chemical agent was actively applied (burnishing technique). CarisolvTM failed to remove the smear layer completely, especially with a single application, independently of the method of application. Multiple applications of CarisolvTM were necessary to achieve a smear layer reduction comparable to that obtained with 24% EDTA conditioning.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
The objective of this work was to verify the effect in the skin of male swines gel (G) containing hyaluronidase (H) associated or not to ultrasound (US). In different areas was applied G; G+US; G+H; G+H+US and mesotherapy (M). Skin fragment was processed in paraffin. To evidence hyaluronic acid (HA) coloration with Alcian Blue (AB) was used and coloration with Hematoxilin/Eosin for morphometry. It was observed that G+H and G+H+US did not reduce coloration for the AB nor presented significant differences for the morphometry. When H was applied mesoteraphycally coloration for the AB diminished. Then, the use of H associated or with US did not seem efficient in the HA reduction.
Resumo:
Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.
Resumo:
A few traditional methods for determining water content in the field are either inaccurate or time consuming. As an alternative, the time domain reflectometry (TDR) technology has been used in the determination of the soil water content for geotechnical applications. This paper presents the preliminary results on the development of a new TDR probe for determining soil water content and dry density at different depths. This new probe is intended to be pushed into the ground using piezocone equipment. Different from the standard TDR probes with straight rods, the new probe consists of two parallel copper stripes coiled around a PVC-steel core. The probe diameter is the same as the standard 10 cm2 piezocone diameter. Through laboratory calibrations, it is possible to establish expressions relating the soil apparent dielectric constant and the bulk electrical conductivity with the gravimetric water content and the dry density. Copyright ASCE 2007.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
Purpose: To evaluate the histological and systemic response to subcutaneous injection of polyethylene gel in rats. Methods: Twenty-one white male rats were divided into 3 groups (G): G1 and G2 received subcutaneous polyethylene gel injection in the dorsal midline and were sacrificed at 30 and 60 postoperative days, respectively. G3 was not exposed to the polyethylene gel and was sacrificed after 60 days. Blood levels of lactate dehydrogenase (LDH), creatine kinase (CK), and alkaline phosphatase (ALP) were evaluated. The heart, kidney, liver, adrenal gland, injection site, and adjacent tissues were histologically examined. The results were submitted to statistical analysis. Results: There was no clinical evidence of extrusion, reduction of the injected volume, or abnormalities in the adjacent tissues. Blood levels of CK and LDH were normal and similar in all groups. ALP levels were significantly lower in G2 than in G1 and G3. The systemic organs were normal on histological examination in the 3 groups evaluated. Microscopically, the polyethylene gel was surrounded by a thin pseudocapsule formation and minimal inflammatory cell response, which decreased from G1 to G2. Conclusion: The subcutaneous injection of polyethylene gel in rats elicited minimal local inflammatory response and no systemic side effects. Copyright © 2008 Informa Healthcare USA, Inc.
Resumo:
Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.
Turning of compacted graphite iron using commercial tiN coated Si 3N4 under dry machining conditions
Resumo:
Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).
Resumo:
The aim of this study was to evaluate the trans-enamel and trans-dentinal effects of a 35% hydrogen peroxide (H2O2) bleaching gel on odontoblast-like cells. Enamel/dentin discs obtained from bovine incisors were mounted in artificial pulp chambers (APCs). Three groups were formed: G1- 35% H2O2; G2- 35% H2O2 + halogen light application; G3- control. The treatments were repeated 5 times and the APCs were incubated for 12 h. Then, the extract was collected and applied for 24 h on the cells. Cell metabolism, total protein dosage and cell morphology were evaluated. Cell metabolism decreased by 62.09% and 61.83% in G1 and G2, respectively. The depression of cell metabolism was statistically significant when G1 and G2 were compared to G3. Total protein dosage decreased by 93.13% and 91.80% in G1 and G2, respectively. The cells in G1 and G2 exhibited significant morphological alterations after contact with the extracts. Regardless of halogen light application, the extracts caused significantly more intense cytopathic effects compared to the control group. After 5 consecutive applications of a 35% H2O2 bleaching agent, either catalyzed or not by halogen light, products of gel degradation were capable to diffuse through enamel and dentin causing toxic effects to the cells.
Resumo:
The objective of this study was to determine the mean distance between the infraorbital foramen and the infraorbital margin, as well as the mean distance between the infraorbital foramen and the piriform aperture on both sides of dry human skulls, with the aim of improving the efficiency in clinical situations, such as surgery and anesthetic procedures. Two hundred ninety-five skulls were used (590 sides), located in the Frankfurt Plane through a craniostat. The measurements were collected by two distinct operators, with a dry tip compass and carried to a caliper. The general mean obtained between the infraorbital foramen and the infraorbital margin was 6.37 mm (±1.69 mm), with a mean of 6,28 mm (±1.79 mm) on the right side and 6.45 mm (±1.76 mm) on the left side. The general mean obtained between the infraorbital foramen and the piriform aperture was 17.67 mm (±1.95 mm), being 17.75 mm (±2.10 mm) on the right side and 17.60 mm (±2.04 mm) on the left side. There were statistically significant differences between the right and left distances of the infraorbital foramen and the infraorbital margin, verified by the Student's-t test. The results of this study allow a more precise location of the infraorbital foramen, particularly as regards the infraorbital margin, since this distance is of relevant importance as a repair point during surgical procedures involving this anatomical structure.
Resumo:
This study evaluated the Influence of the coloring agent concentration on the temperature of the gel layer and pulp chamber during dental bleaching with an LED/laser light source. Ten human incisors and a digital thermometer with K-type thermocouples were used. Using a high-speed spherical diamond bur, endodontic access was gained through openings on the lingual faces until pulp chamber was exposed. One end of the thermocouple was placed on the labial surface (immersed in bleaching gel) and the other end in the pulp chamber. The same 10 specimens were used in the 12 groups, according to the type and concentration of bleaching gel. Each bleaching gel was used in four different concentrations: manipulated without coloring, with normal quantity recommended by the manufacturer, with double the recommended amount of coloring, and with triple the recommended amount of coloring. The temperature rise was measured every 30 seconds for three minutes with a K-type thermocouple. The data were analyzed by ANOVA to examine the concentration and type of bleaching gel. This test was followed by Tukey's test, which was performed Independently for the gel at the labial surface and the pulp chamber (a = 5%). For both surfaces, values of p = 0.00 were obtained for all factors and for the Interaction between them. The varying concentrations of coloring agent produced statistically significant differences in terms of temperature increase for both the gel layer and the pulp chamber during activation.
Resumo:
The aim of this paper was to evaluate the antimicrobial activity of 2% chlorhexidine gel (CLX) associated with various intracanal medicaments against Candida albicans and Enterococcus faecalis inoculated in root canals. Thirty six human single-rooted teeth were contaminated with C.albicans and E.faecalis. The canals were instrumented using 2% CLX gel and were divided into three groups according to the intracanal medicaments (ICM) used. Group 1: calcium hydroxide paste [Ca(OH)], Group 2: 2% chlorhexidine gel (CLX) and Group 3: 2% CLX gel + Ca(OH). The root canal collections were performed after 21 days of contamination (control collection), after instrumentation (1st collection), after 14 days of intracanal medicament (2nd collection) and 7 days after medicament removal (3rd collection). The microbiological samples were plated in culture media and incubated for 48 hours. The results were submitted to Kruskal-Wallis test (P ≤ 0.05). It was verified that the instrumentation with CLX reduced the number of CFU/ml significantly when compared with the confirmation collection (control). However, the use of the ICM was only capable to eliminate completely the microorganisms in the root canals without difference statistics between them. Although the use of 2% chlorherixidine gel reduces the number of microorganisms significantly, only the ICM calcium hydroxide and calcium hydroxide associated with chlorhexidine are able to eliminate these microorganisms completely.
Resumo:
Acetylacetone has been used as a chemical modifier for the synthesis of undoped and Tb3+-doped Y3Al5O12 powders. A systematic investigation concerning its influence on the structural and morphological properties of amorphous and crystallized samples has been carried out. These properties have been comparatively studied by means of X-ray diffraction, infrared spectroscopy, SEM, XAS and SAXS. 27Al NMR and EPR experiments have been performed to complete the study. The combined results have evidenced that acetylacetone promotes organic groups departure during calcination, entailing a better structural organization at lower temperatures compared with unmodified powders. Structuration has been proven to occur at short-scale range until a 600°C heating treatment before being extended by coalescence at higher temperatures. Finally, the presence of acac ligands on the alkoxides leads to a monomer-cluster aggregation process, and thus to a more open network. © 2010 The Royal Society of Chemistry.