1000 resultados para drug manufacture
Resumo:
Purpose: To evaluate the toxicity focussing on hepatic, gastrointestinal and cardiac parameters following PRECISION TACE with DC Bead? versus conventional transarterial chemoembolization (cTACE) in the treatment of intermediate-stage hepatocellular carcinoma (HCC). Methods and Materials: This prospective, randomized, multicentre study was conducted under best practice trial management and authorized by local institutional review boards. Informed consent was obtained. 212 patients (185 men/27 women; mean: 67 years) were randomized to be treated with DC Beads? or cTACE. The majority of both groups presented in a more advanced stage. Safety was measured by rate of adverse events (South West Oncology Group criteria) and changes in laboratory parameters. Cardiotoxicity was assessed by means of left ventricular ejection fraction (LVEF) in MRI or echocardiography. The results of the two groups were compared using the chi-square test and Student`s t-test. Results: Mean maximum alanine transaminase increase in the DC Bead group was 50% in the cTACE group (p < 0.001) and 59% for aspartate transaminase (p < 0.001). For bilirubin, mean increase was 5.30±15.13 vs. 13.53±73.89 µmol/L. Concerning gastrointestinal disorders, 120 adverse events (AEs) occurred in 57/93 (61.3%) patients in the DC Bead group vs. 114 in 49/108 (45.4%) in cTACE. Concerning hepatobiliary disorders, serious AEs occurred in 8/93 (8.6%) vs. 11/108 (10.2%) patients. LVEF showed an increase in the DC Bead group by +2.7±10.1 percentage points and a small decrease by -1.5±7.6 in the cTACE group, p=0.018. Conclusion: PRECISION TACE is safe, even in more advanced HCC patients. Serious liver and cardiac toxicity were significantly lower in the DC Bead group.
Resumo:
OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.
Resumo:
Imatinib mesylate, a selective inhibitor of tyrosine kinases, has excellent efficacy in the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). Inducing durable responses and achieving prolonged survival, it has become the standard of care for the treatment of these diseases. It has opened the way to the development of additional tyrosine kinase inhibitors (TKIs), including sunitinib, nilotinib, dasatinib and sorafenib, all indicated for the treatment of various haematological malignancies and solid tumours. TKIs are prescribed for prolonged periods and are often taken by patients with - notably cardiovascular - comorbidities. Hence TKIs are regularly co-administered with cardiovascular drugs, with a considerable risk of potentially harmful drug-drug interactions due to the large number of agents used in combination. However, this aspect has received limited attention so far, and a comprehensive review of the published data on this important topic has been lacking. We review here the available data and pharmacological mechanisms of interactions between commonly prescribed cardiovascular drugs and the TKIs marketed at present. Regular updating of the literature on this topic will be mandatory, as will the prospective reporting of unexpected clinical observations, given the fact that these drugs have been only recently marketed.
Resumo:
BACKGROUND: The Thai-Cambodian border has been known as the origin of antimalarial drug resistance for the past 30 years. There is a highly diverse market for antimalarials in this area, and improved knowledge of drug pressure would be useful to target interventions aimed at reducing inappropriate drug use. METHODS: Baseline samples from 125 patients with falciparum malaria recruited for 2 in vivo studies (in Preah Vihear and Pursat provinces) were analyzed for the presence of 14 antimalarials in a single run, by means of a liquid chromatography-tandem mass spectrometry assay. RESULTS: Half of the patients had residual drug concentrations above the lower limit of calibration for at least 1 antimalarial at admission. Among the drugs detected were the currently used first-line drugs mefloquine (25% and 35% of patients) and piperaquine (15% of patients); the first-line drug against vivax malaria, chloroquine (25% and 41% of patients); and the former first-line drug, quinine (5% and 34% patients). CONCLUSIONS: The findings demonstrate that there is high drug pressure and that many people still seek treatment in the private and informal sector, where appropriate treatment is not guaranteed. Promotion of comprehensive behavioral change, communication, community-based mobilization, and advocacy are vital to contain the emergence and spread of parasite resistance against new antimalarials.
Resumo:
PURPOSE: To examine the relationship between the nonmedical prescription drug use (NMPDU) of six drug classes and health. METHODS: Data on young adults males (mean age, 19.96 years) from the baseline and follow-up of the Cohort Study on Substance Use Risk Factors (C-SURF) were used (n = 4,958). Two sets of logistic regression models were fitted to examine the associations between NMPDU of opioid analgesics, sedatives or sleeping pills, anxiolytics, antidepressants, beta blockers and stimulants, and health status (assessed using the Medical Outcomes Study 12-Item Short Form Survey Instrument [SF-12 v2]). We first computed odds ratios between NMPDU at baseline and poor mental and physical health at follow-up, adjusting for poor mental or physical health at baseline. We then computed odds ratios between poor mental and physical health at baseline and NMPDU at follow-up, adjusting for NMPDU at baseline. RESULTS: Three key findings regarding mental health were (1) there was a reciprocal risk between poor mental health and sedatives and anxiolytics; (2) poor mental health increased NMPDU of opioid analgesics and antidepressants but not vice versa; and (3) there were no associations with stimulants. Three key findings regarding physical health were (1) poor physical health increased the risk of NMPDU of anxiolytics; (2) the only reciprocal risk was between physical health and NMPDU of opioid analgesics; and (3) there were no associations with stimulants. CONCLUSION: These results, among the first ever on reciprocal effects between NMPDU and mental and physical health status, give unique information concerning the adverse effects of NMPDU on health and vice versa. The study shows that NMPDU is not only a sign of self-medication but may induce health problems.
Resumo:
In this review, we first summarize the structure and properties of biological membranes and the routes of passive drug transfer through physiological barriers. Lipophilicity is then introduced in terms of the intermolecular interactions it encodes. Finally, lipophilicity indices from isotropic solvent systems and from anisotropic membrane-like systems are discussed for their capacity to predict passive drug permeation across biological membranes such as the intestinal epithelium, the blood-brain barrier (BBB) or the skin. The broad evidence presented here shows that beyond the predictive power of lipophilicity parameters, the various intermolecular forces they encode allow a mechanistic interpretation of passive drug permeation.
Resumo:
BACKGROUND: Many medicines used in newborns, infants, children and adolescents are not licensed ("unlicensed") or are prescribed outside the terms of the marketing authorization ("off-label"). Several studies have shown that this is a common practice in various healthcare settings in the USA, Europe and Australia, but data are scarce in Switzerland. OBJECTIVES: The aim of our prospective study was to determine the proportion of unlicensed or off-label prescriptions in paediatric patients. METHODS: This pilot study was conducted prospectively over a six month period in the department of paediatrics of a university hospital. RESULTS: Sixty patients aged from three days to 14 years were included in the study. A total of 483 prescriptions were written for the patients. More than half of all prescriptions (247; 51%) followed the terms of the marketing authorization. 114 (24%) were unlicensed and 122 (25%) off-label. All patients received at least one unlicensed or offlabel medicine. CONCLUSION: The use of unlicensed or off-label medicines to treat children was found to be common. Co-operation between the pharmaceutical industry, national regulatory authorities, clinical researchers, healthcare professionals and parents is required in order to ensure that children do not remain "therapeutic orphans".
Resumo:
Aims: Plasma concentrations of imatinib differ largely between patients despite same dosage, owing to large inter-individual variability in pharmacokinetic (PK) parameters. As the drug concentration at the end of the dosage interval (Cmin) correlates with treatment response and tolerability, monitoring of Cmin is suggested for therapeutic drug monitoring (TDM) of imatinib. Due to logistic difficulties, random sampling during the dosage interval is however often performed in clinical practice, thus rendering the respective results not informative regarding Cmin values.Objectives: (I) To extrapolate randomly measured imatinib concentrations to more informative Cmin using classical Bayesian forecasting. (II) To extend the classical Bayesian method to account for correlation between PK parameters. (III) To evaluate the predictive performance of both methods.Methods: 31 paired blood samples (random and trough levels) were obtained from 19 cancer patients under imatinib. Two Bayesian maximum a posteriori (MAP) methods were implemented: (A) a classical method ignoring correlation between PK parameters, and (B) an extended one accounting for correlation. Both methods were applied to estimate individual PK parameters, conditional on random observations and covariate-adjusted priors from a population PK model. The PK parameter estimates were used to calculate trough levels. Relative prediction errors (PE) were analyzed to evaluate accuracy (one-sample t-test) and to compare precision between the methods (F-test to compare variances).Results: Both Bayesian MAP methods allowed non-biased predictions of individual Cmin compared to observations: (A) - 7% mean PE (CI95% - 18 to 4 %, p = 0.15) and (B) - 4% mean PE (CI95% - 18 to 10 %, p = 0.69). Relative standard deviations of actual observations from predictions were 22% (A) and 30% (B), i.e. comparable to the intraindividual variability reported. Precision was not improved by taking into account correlation between PK parameters (p = 0.22).Conclusion: Clinical interpretation of randomly measured imatinib concentrations can be assisted by Bayesian extrapolation to maximum likelihood Cmin. Classical Bayesian estimation can be applied for TDM without the need to include correlation between PK parameters. Both methods could be adapted in the future to evaluate other individual pharmacokinetic measures correlated to clinical outcomes, such as area under the curve(AUC).
Resumo:
Numerous drug delivery systems (DDSs) can be used as intraocular tools to provide a sustained and calibrated release for a specific drug. Great progress has been made on the design, biocompatibility, bioavailability, and efficacy of DDSs. Although several of them are undergoing clinical trials, a few are already on the market and could be of a routine use in clinical practice. Moreover, miniaturization of the implants makes them less and less traumatic for the eye tissues and some DDSs are now able to target certain cells or tissues specifically. An overview of ocular implants with therapeutic application potentials is provided.
Resumo:
Switzerland has adopted a prevention strategy including the promotion of non-sharing injection material and use of condoms. The access to sterile equipment has been made easier, but regional differences still exist. Studies conducted between 1989 and 1992 among drug users in different Swiss regions are reviewed in order to examine if progress in prevention occurred. Syringe sharing diminished everywhere, but rather high sharing rates persist where sterile material is less accessible. Condom use increased, but the situation is still unsatisfactory considering the high HIV prevalence among i.v. drug users. Where several surveys have been conducted consecutively, a stabilization of HIV prevalence was observed. This suggests a slowing down of the progression of the epidemic among drug users. These results, obtained in few years, are encouraging in the light of the pessimism which prevailed at the beginning of the epidemic about the ability of drug users to adopt preventive behaviour.
Resumo:
Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions