894 resultados para diurnal cycle
Resumo:
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.
Resumo:
In this paper the origin and evolution of the Sun’s open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun’s open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.
Resumo:
During substorms, magnetic energy is stored and released by the geomagnetic tail in cycles of growth and expansion phases, respectively. Hence substorms are inherently non-steady phenomena. On the other hand, all numerical models (and most conceptual ones) of ionospheric convection produced to date have considered only steady-state situations. In this paper, we investigate the relationship of substorms to convection. In particular, it is shown that the steady-state convection pattern represents an average over several substorm cycles and does not apply on time scales shorter than the substorm cycle period of 1-2 hours. The flows driven by the growth and expansion phases of substorms are integral (indeed dominant) part of, as opposed to a transient addition to, the overall convection pattern.
Resumo:
The surface response to 11 year solar cycle variations is investigated by analyzing the long-term mean sea level pressure and sea surface temperature observations for the period 1870–2010. The analysis reveals a statistically significant 11 year solar signal over Europe, and the North Atlantic provided that the data are lagged by a few years. The delayed signal resembles the positive phase of the North Atlantic Oscillation (NAO) following a solar maximum. The corresponding sea surface temperature response is consistent with this. A similar analysis is performed on long-term climate simulations from a coupled ocean-atmosphere version of the Hadley Centre model that has an extended upper lid so that influences of solar variability via the stratosphere are well resolved. The model reproduces the positive NAO signal over the Atlantic/European sector, but the lag of the surface response is not well reproduced. Possible mechanisms for the lagged nature of the observed response are discussed.
Resumo:
Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.
Resumo:
The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.
Resumo:
The ms. Paris, BnF, fr. 344 was produced in Lorraine at the end of the thirteenth century and contains the whole Lancelot-Grail cycle. It presents an abridged version of the end of the Vulgate Sequel to Merlin. The rewriting of the end of the sequel glosses over the romantic episodes of the common version and focuses on the figure of Arthur, a legitimate sovereign and skilful war leader confronted by his barons’ dissidence. From the end of f° 182 to f° 184v°, BnF, fr. 344, narrates the departure of Kings Ban and Bohort for the Continent, the embassy of King Loth and his sons, and the fight against the Saxons of the Christian coalition gathered at Logres for the feast of the Holy Cross. This article shows the ideological implications of the abridgement and the illustration used at the end of the Vulgate Sequel in ms. fr. 344, as it exalts Arthur’s kingship and insists on the rallying, penance and submission of his rebelled vassals.
Resumo:
The long-term changes in the main tidal constituents (O1, K1, M2, N2, and S2) along the coasts of China and in adjacent seas are investigated based on 17 tide-gauge records covering the period 1954–2012. The observed 18.61 year nodal modulations of the diurnal constituents O1 and K1 are in agreement with the equilibrium tidal theory, except in the South China Sea. The observed modulations of the M2 and N2 amplitudes are smaller than theoretically predicted at the northern stations and larger at the southern stations. The discrepancies between the theoretically predicted nodal variations and the observations are discussed. The 8.85 year perigean cycle is identifiable in the N2 parameters at most stations, except those in the South China Sea. The radiational component of S2 contributes on average 16% of the observed S2 except in the Gulf of Tonkin, on the south coast, where it accounts for up to 65%. We confirmed the existence of nodal modulation in S2, which is stronger on the north coast. The semidiurnal tidal parameters show significant secular trends in the Bohai and Yellow Seas, on the north coast, and in the Taiwan Strait. The largest increase is found for M2 for which the amplitude increases by 4–7 mm/yr in the Yellow Sea. The potential causes for the linear trends in tidal constants are discussed.
Resumo:
The mineralogy of airborne dust affects the impact of dust particles on direct and indirect radiative forcing, on atmospheric chemistry and on biogeochemical cycling. It is determined partly by the mineralogy of the dust-source regions and partly by size-dependent fractionation during erosion and transport. Here we present a data set that characterizes the clay and silt-sized fractions of global soil units in terms of the abundance of 12 minerals that are important for dust–climate interactions: quartz, feldspars, illite, smectite, kaolinite, chlorite, vermiculite, mica, calcite, gypsum, hematite and goethite. The basic mineralogical information is derived from the literature, and is then expanded following explicit rules, in order to characterize as many soil units as possible. We present three alternative realizations of the mineralogical maps, taking the uncertainties in the mineralogical data into account. We examine the implications of the new database for calculations of the single scattering albedo of airborne dust and thus for dust radiative forcing.
Resumo:
Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms(THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward, while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about 3 h.
Resumo:
The concept of resilience has emerged out of a complex literature that has sought to make sense of an increasingly interconnected world that appears ever more beset by crises. Resilience’s appeal is reflected by the burgeoning mass of literature that has appeared on the subject in the past five years. However, there is ongoing debate surrounding its usage, with some commentators claiming that the term is inherently too conservative a one to be usefully applied to situations of vulnerability in which more radical social change is required. This article extends existing efforts to formulate more transformative notions of resilience by reframing it as a double-edged outcome of the pre-reflective and critical ways in which actors draw upon their internal structures following the occurrence of a negative event, thus reproducing or changing the external structural context that gave rise to the event in the first place. By employing a structuration-inspired analysis to the study of small-scale farmer responses to a flood-induced resettlement programme in central Mozambique, the article presents a systematic approach to the examination of resilience in light of this reframing. The case study findings suggest that more attention should be paid to the facilitative, as well as constraining, nature of structures if vulnerable populations are to be assisted in their efforts to exert transformative capacity over the wider conditions that give rise to their difficulties.
Resumo:
The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, while anthropogenic carbon emissions are likely to continue in the future. To study changes of the carbon cycle and climate on timescales of a few hundred to a few thousand years, we have included a simple carbon cycle model into the iLOVECLIM Earth System Model. In this study, we describe the ocean and terrestrial biosphere carbon cycle models and their performance relative to observational data. We focus on the main carbon cycle variables including the carbon isotope ratios δ13C and the Δ14C. We show that the model results are in good agreement with modern observations both at the surface and in the deep ocean for the main variables, in particular phosphates, dissolved inorganic carbon and the carbon isotopes.
Resumo:
A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles). The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd- and even-numbered solar cycles displaying qualitatively different waveforms. Correct numbering of solar cycles also underpins empirical cycle-to-cycle relations which are used as first-order tests of stellar dynamo models. There has been much debate about whether the unusually long solar cycle 4 (SC4), spanning- 1784–1799, was actually two shorter solar cycles combined as a result of poor data coverage in the original Wolf sunspot number record. Indeed, the group sunspot number does show a small increase around 1794–1799 and there is evidence of an increase in the mean latitude of sunspots at this time, suggesting the existence of a cycle ‘‘4b’’. In this study, we use cosmogenic radionuclide data and associated reconstructions of the heliospheric magnetic field (HMF) to show that the Hale cycle has persisted over the last 300 years and that data prior to 1800 are more consistent with cycle 4 being a single long cycle (the ‘‘no SC4b’’ scenario). We also investigate the effect of cycle 4b on the HMF using an open solar flux (OSF) continuity model, in which the OSF source term is related to sunspot number and the OSF loss term is determined by the heliospheric current sheet tilt, assumed to be a simple function of solar cycle phase. The results are surprising; Without SC4b, the HMF shows two distinct peaks in the 1784–1799 interval, while the addition of SC4b removes the secondary peak, as the OSF loss term acts in opposition to the later rise in sunspot number. The timing and magnitude of the main SC4 HMF peak is also significantly changed by the addition of SC4b. These results are compared with the cosmogenic isotope reconstructions of HMF and historical aurora records. These data marginally favour the existence of SC4b (the ‘‘SC4b’’ scenario), though the result is less certain than that based on the persistence of the Hale cycle. Thus while the current uncertainties in the observations preclude any definitive conclusions, the data favour the ‘‘no SC4b’’ scenario. Future improvements to cosmogenic isotope reconstructions of the HMF, through either improved modelling or additional ice cores from well-separated geographic locations, may enable questions of the existence of SC4b and the phase of Hale cycle prior to the Maunder minimum to be settled conclusively.
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.