924 resultados para distributed amorphous human intelligence genesis robust communication network
Resumo:
Inter-individual heterogeneity is evident in aging; education level is known to contribute for this heterogeneity. Using a cross-sectional study design and network inference applied to resting-state fMRI data, we show that aging was associated with decreased functional connectivity in a large cortical network. On the other hand, education level, as measured by years of formal education, produced an opposite effect on the long-term. These results demonstrate the increased brain efficiency in individuals with higher education level that may mitigate the impact of age on brain functional connectivity.
Resumo:
A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Resumo:
With the implementation of Information and Communication Technologies in the health sector, it became possible the existence of an electronic record of information for patients, enabling the storage and the availability of their information in databases. However, without the implementation of a Business Intelligence (BI) system, this information has no value. Thus, the major motivation of this paper is to create a decision support system that allows the transformation of information into knowledge, giving usability to the stored data. The particular case addressed in this chapter is the Centro Materno Infantil do Norte, in particular the Voluntary Interruption of Pregnancy unit. With the creation of a BI system for this module, it is possible to design an interoperable, pervasive and real-time platform to support the decision-making process of health professionals, based on cases that occurred. Furthermore, this platform enables the automation of the process for obtaining key performance indicators that are presented annually by this health institution. In this chapter, the BI system implemented in the VIP unity in CMIN, some of the KPIs evaluated as well as the benefits of this implementation are presented.
Resumo:
Wireless mesh networks present an attractive communication solution for various research and industrial projects. However, in many cases, the appropriate preliminary calculations which allow predicting the network behavior have to be made before the actual deployment. For such purposes, network simulation environments emulating the real network operation are often used. Within this paper, a behavior comparison of real wireless mesh network (based on 802.11s amendment) and the simulated one has been performed. The main objective of this work is to measure performance parameters of a real 802.11s wireless mesh network (average UDP throughput and average one-way delay) and compare the derived results with characteristics of a simulated wireless mesh network created with the NS-3 network simulation tool. Then, the results from both networks are compared and the corresponding conclusion is made. The corresponding results were derived from simulation model and real-worldtest-bed, showing that the behavior of both networks is similar. It confirms that the NS-3 simulation model is accurate and can be used in further research studies.
Resumo:
Delayed perfect monitoring in an infinitely repeated discounted game is modelled by letting the players form a connected and undirected network. Players observe their immediate neighbors' behavior only, but communicate over time the repeated game's history truthfully throughout the network. The Folk Theorem extends to this setup, although for a range of discount factors strictly below 1, the set of sequential equilibria and the corresponding payoff set may be reduced. A general class of games is analyzed without imposing restrictions on the dimensionality of the payoff space. This and the bilateral communication structure allow for limited results under strategic communication only. As a by-product this model produces a network result; namely, the level of cooperation in this setup depends on the network's diameter, and not on its clustering coefficient as in other models.
Resumo:
El present treball fa un anàlisi i desenvolupament sobre les millores en la velocitat i en l’escalabilitat d'un simulador distribuït de grups de peixos. Aquests resultats s’han obtingut fent servir una nova estratègia de comunicació per als processos lògics (LPs) i canvis en l'algoritme de selecció de veïns que s'aplica a cadascun dels peixos en cada pas de simulació. L’idea proposada permet que cada procés lògic anticipi futures necessitats de dades pels seus veïns reduint el temps de comunicació al limitar la quantitat de missatges intercanviats entre els LPs. El nou algoritme de selecció dels veïns es va desenvolupar amb l'objectiu d'evitar treball innecessari permetent la disminució de les instruccions executades en cada pas de simulació i per cadascun del peixos simulats reduint de forma significativa el temps de simulació.
Resumo:
We have developed an in vitro model of granuloma formation for the purpose of studying the immunological components of delayed type hypersensitivity granuloma formation in patients infected with Schistosoma mansoni. Our data show that 1) granulomatous hypersensitivity can be studied by examining the cellular reactivity manifested as multiple cell layers surrounding the antigen conjugated beads; 2) this reactivity is a CD4 cell dependent, macrophage dependent, B cell independent response and 3) the in vitro granuloma response is antigenically specific for parasite egg antigens. Studies designed to investigate the immune regulation of granulomatous hypersensitivity using purified populations of either CD4 or CD8 T cells have demonstrated the complexity of cellular interactions in the suppression of granulomatous hypersensitivity. The anti-S. mansoni egg immune responses of individual patients with chronic intestinal schistosomiasis can be classified either as soluble egg antigen (SEA) hypersensitive with maximal granulomatous hypersensitivity or SEA suppressive with activation of the T cell suppressor pathway with effective SEA granuloma modulation. Our data suggest that T cell network interactions are active in the generation of effective granuloma modulation in chronic intestinal schistosomiasis patients.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
This paper studies information transmission between multiple agents with di¤erent preferences and a welfare maximizing decision maker who chooses the quality or quantity of a public good (e.g. provision of public health service; carbon emissions policy; pace of lectures in a classroom) that is consumed by all of them. Communication in such circumstances suffers from the agents' incentive to "exaggerate" their preferences relative to the average of the other agents, since the decision maker's reaction to each agent's message is weaker than in one-to-one communication. As the number of agents becomes larger the quality of information transmission diminishes. The use of binary messages (e.g. "yes" or "no") is shown to be a robust mode of communication when the main source of informational distortion is exaggeration.
Resumo:
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.