971 resultados para dipole antennas
Resumo:
New space-time trellis codes with four- and eight-level phase-shift keying (PSK) and 16-phase quadrature amplitude modulation (QAM) for two transmit antennas in slow-fading channels are presented in this paper. Unlike most of the codes that are reported in the literature, the proposed codes are specifically designed to minimize the frame error probability from a union-bound perspective. The performance of the proposed codes with various memory orders and receive antennas is evaluated by simulation. It is shown that the proposed codes outperform previously known codes in all studied cases.
Resumo:
We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally,we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system. £.
Resumo:
A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m × 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m 8m and 10m × 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system. © 2012 IEEE.
Resumo:
In this study, the authors describe two-dimensional direction finding and signal polarisation estimation from a cylindrical conformal array consisting of directional and polarised antenna elements. Firstly, a simple and general transformation procedure, based on the mathematical framework of geometric algebra, is presented for arbitrary conformal arrays with polarised and directional antennas. Subsequently, the authors utilise the symmetry of cylindrical arrays to estimate signal parameters via rotational invariance techniques. The authors show how to iteratively estimate the azimuth and elevation angles of the incident signal, as well as its polarisation. To illustrate the versatility of this method, the results of simulations on a 3×4 cylindrical conformal array are shown and discussed. © 2012 The Institution of Engineering and Technology.
Resumo:
This paper presents a long range and effectively error-free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system. The system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. The novel technique is first theoretically modelled using a Rician fading channel. It is shown that conventional RFID systems suffer from multi-path fading resulting in nulls in radio environments. We, for the first time, demonstrate that the nulls can be moved around by varying the phase and frequency of the interrogation signals in a multi-antenna system. As a result, much enhanced coverage can be achieved. A proof of principle prototype RFID system is built based on an Impinj R2000 transceiver. The demonstrator system shows that the new approach improves the tag detection accuracy from <50% to 100% and the tag backscatter signal strength by 10dB over a 20 m x 9 m area, compared with a conventional switched multi-antenna RFID system.
Resumo:
A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10m x 8m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m x 8m and 10m x 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system.
Resumo:
We describe an RFID tag reading system for reading one or more RFID Tags, the system comprising an RF transmitter and an RF receiver, a plurality of transmit/receive antennas coupled to said RF transmitter and to said RF receiver, to provide spatial transmit/receive signal diversity, and a tag signal decoder coupled to at least said RF receiver, wherein said system is configured to combine received RF signals from said antennas to provide a combined received RF signal, wherein said RF receiver has said combined received RF signal as an input; wherein said antennas are spaced apart from one another sufficiently for one said antenna not to be within the near field of another said antenna, wherein said system is configured to perform a tag inventory cycle comprising a plurality of tag read rounds to read said tags, a said tag read round comprising transmission of one or more RF tag interrogation signals simultaneously from said plurality of antennas and receiving a signal from one or more of said tags, a said tag read round having a set of time slots during which a said tag is able to transmit tag data including a tag ID for reception by said antenna, and wherein said system is configured to perform, during a said tag inventory cycle, one or both of: a change in a frequency of said tag interrogation signals transmitted simultaneously from said plurality of antennas, and a change in a relative phase of a said RF tag interrogation signals transmitted from one of said antennas with respect to another of said antennas.
Resumo:
We describe a methods of locating an RFID tag. One method comprises: transmitting tag location signals from a plurality of different transmit antennas, wherein said antennas are spaced apart by more than a near field limit distance at a frequency of a said signal; receiving a corresponding plurality of receiving return signals from said tag; and processing said tag return signals to determine a range to said tag; wherein said transmitting comprises transmitting at a plurality of different frequencies; wherein said processing comprises determining a phase difference at said plurality of different frequencies to determine said range, and wherein said determining of said phase difference determines a phase difference between either i) two or more of said transmit signals resulting in a maxima in the returned signal RSSI or ii) a first transmit signal and its corresponding return signal; and wherein said determining of said range to said tag uses said return signals weighted responsive to a respective received signal strength of the return signal. Further data which may be used for averaging may be generated by using the above techniques along with changes in the polarisation state of the transmit and receive antennas and/or physical reconfiguration of the antennas (e.g. switch the transmit and receive elements).
Resumo:
Ubiquitous in-building Real Time Location Systems (RTLS) today are limited by costly active radio frequency identification (RFID) tags and short range portal readers of low cost passive RFID tags. We, however, present a novel technology locates RFID tags using a new approach based on (a) minimising RFID fading using antenna diversity, frequency dithering, phase dithering and narrow beam-width antennas, (b) measuring a combination of RSSI and phase shift in the coherent received tag backscatter signals and (c) being selective of use of information from the system by, applying weighting techniques to minimise error. These techniques make it possible to locate tags to an accuracy of less than one metre. This breakthrough will enable, for the first time, the low-cost tagging of items and the possibility of locating them at relatively high precision.
Resumo:
This paper presents a new wireless radio frequency identification (RFID) repeater system, facilitating remote interrogation without the need for arrays of wired antennas, despite using entirely passive, low-cost ultra high frequency (UHF) RFID tags. The proposed system comprises a master RFID reader with both transmit and receive functions, and multiple RFID repeaters to receive, amplify and retransmit tag-to-reader and reader-to-tag communications. This expands the area over which the master RFID reader may provide coverage for a given maximum transmit power at each antenna. We first demonstrate a single hop wireless repeater system to allow similar read performance to a standard commercial passive UHF RFID reader. Finally, a proof of principle system demonstrates that a single wireless repeater node can allow an extension in range.
Resumo:
Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.
Resumo:
We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.
Resumo:
In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.
Resumo:
A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.
Resumo:
An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 leads to suppression of phase re-laxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron-hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.