977 resultados para digestion partition
Resumo:
Background: Tissue MicroArrays (TMAs) represent a potential high-throughput platform for the analysis and discovery of tissue biomarkers. As TMA slides are produced manually and subject to processing and sectioning artefacts, the layout of TMA cores on the final slide and subsequent digital scan (TMA digital slide) is often disturbed making it difficult to associate cores with their original position in the planned TMA map. Additionally, the individual cores can be greatly altered and contain numerous irregularities such as missing cores, grid rotation and stretching. These factors demand the development of a robust method for de-arraying TMAs which identifies each TMA core, and assigns them to their appropriate coordinates on the constructed TMA slide.
Methodology: This study presents a robust TMA de-arraying method consisting of three functional phases: TMA core segmentation, gridding and mapping. The segmentation of TMA cores uses a set of morphological operations to identify each TMA core. Gridding then utilises a Delaunay Triangulation based method to find the row and column indices of each TMA core. Finally, mapping correlates each TMA core from a high resolution TMA whole slide image with its name within a TMAMap.
Conclusion: This study describes a genuine robust TMA de-arraying algorithm for the rapid identification of TMA cores from digital slides. The result of this de-arraying algorithm allows the easy partition of each TMA core for further processing. Based on a test group of 19 TMA slides (3129 cores), 99.84% of cores were segmented successfully, 99.81% of cores were gridded correctly and 99.96% of cores were mapped with their correct names via TMAMaps. The gridding of TMA cores were also extensively tested using a set of 113 pseudo slide (13,536 cores) with a variety of irregular grid layouts including missing cores, rotation and stretching. 100% of the cores were gridded correctly.
Resumo:
Diabetes mellitus was induced in male beagles by a single injection of an alloxan and streptozotocin cocktail and fasting blood sugar levels maintained between 15 and 20 mmol/l. Five years after induction of diabetes, three diabetic animals were sacrificed, together with sex and age-matched controls, and the retinas fixed for either transmission electron microscopy (TEM) or trypsin digestion. In TEM specimens, capillaries in close proximity to the major vessels were designated as either AE (arterial environment) or VE (venous environment) and the thickness of their basement membranes (BMs) measured using an image analyser based two dimensional morphometric analysis system. Results show that the BMs of retinal capillaries from the diabetic dogs were significantly thicker than those from control dogs. Furthermore, within the diabetic group the AE capillaries had thicker BMs than VE capillaries (p less than or equal to 0.05). The controls, however, showed no significant difference in BM thickness between AE and VE capillaries. Although many of the capillaries designated as AE or VE would actually have been derived from the opposite side of the circulation, with respect to BM thickness, they conformed to values of their specific group. The conclusion is that diabetic capillaries are more vulnerable to BM thickening in an arterial environment than in a venous environment.
Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase
Resumo:
Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in > 2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH2] Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite.
Resumo:
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m-3 day-1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg-1 COD.
Resumo:
Malaria caused by several species of Plasmodium is major parasitic disease of humans, causing 1-3 million deaths worldwide annually. The widespread resistance of the human parasite to current drug therapies is of major concern making the identification of new drug targets urgent. While the parasite grows and multiplies inside the host erythrocyte it degrades the host cell hemoglobin and utilizes the released amino acids to synthesize its own proteins. The P. falciparum malarial M1 alanyl-aminopeptidase (PfA-M1) is an enzyme involved in the terminal stages of hemoglobin digestion and the generation of an amino acid pool within the parasite. The enzyme has been validated as a potential drug target since inhibitors of the enzyme block parasite growth in vitro and in vivo. In order to gain further understanding of this enzyme, molecular dynamics simulations using data from a recent crystal structure of PfA-M1 were performed. The results elucidate the pentahedral coordination of the catalytic Zn in these metallo-proteases and provide new insights into the roles of this cation and important active site residues in ligand binding and in the hydrolysis of the peptide bond. Based on the data, we propose a two-step catalytic mechanism, in which the conformation of the active site is altered between the Michaelis complex and the transition state. In addition, the simulations identify global changes in the protein in which conformational transitions in the catalytic domain are transmitted at the opening of the N-terminal 8 angstrom-long channel and at the opening of the 30 angstrom-long C-terminal internal chamber that facilitates entry of peptides to the active site and exit of released amino acids. The possible implications of these global changes with regard to enzyme function are discussed.
Resumo:
An LC/MS/MS method was developed and validated for the simultaneous identification, confirmation, and quantification of 12 glucocorticoids in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. The developed method can detect and confirm the presence of dexamethasone, betamethasone, prednisolone, flumethasone, 6 alpha-methylprednisolone, fluorometholone, triamcinolone acetonide, prednisone, cortisone, hydrocortisone, clobetasol propionate, and clobetasol butyrate in bovine milk. Milk samples are extracted with acetonitrile; sodium chloride is subsequently added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is evaporated to dryness and reconstituted in a water acetonitrile mixture, and determination is carried out by LC/MS/MS. The method permits analysis of up to 30 samples in 1 day.
Resumo:
A surface plasmon resonance (SPR) biosensor screening assay was developed and validated to detect 11 benzimidazole carbamate (BZT) veterinary drug residues in milk. The polyclonal antibody used was raised in sheep against a methyl 5(6)-[(carboxypentyl)-thio]-2-benzimidazole carbamate protein conjugate. A sample preparation procedure was developed using a modified QuEChERS method. BZT residues were extracted from milk using liquid extraction/partition with a dispersive solid phase extraction clean-up step. The assay was validated in accordance with the performance criteria described in 2002/657/EC. The limit of detection of the assay was calculated from the analysis of 20 known negative milk samples to be 2.7 mu g kg(-1). The detection capability (CC beta) of the assay was determined to be 5 mu g kg(-1) for 11 benzimidazole residues and the mean recovery of analytes was in the range 81-116%. A comparison was made between the SPR-biosensor and UPLC-MS/MS analyses of milk samples (n = 26) taken from cows treated different benzimidazole products, demonstrating the SPR-biosensor assay to be fit for purpose. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of seven licensed anti-inflammatory drugs (AIDS) in bovine milk. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. Two classes of AIDS were investigated, corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). The developed method is capable of detecting and confirming dexamethasone (DXM), betamethasone (BTM), prednisolone (FRED), tolfenamic acid (TV), 5-hydroxy flunixin (5-OH-FLU). meloxicam (MLX) and 4-methyl amino antipyrine (4-MAA) at their associated maximum residue limits (MRLs). These compounds represent all the corticosteroids and NSAIDs licensed for use in bovine animals producing milk for human consumption. These compounds have never been analysed before in the same method and also 4-methyl amino antipyrine has never been analysed with the other licensed NSAIDs. The method can be considered rapid as permits the analysis of up to 30 samples in one day. Milk samples are extracted with acetonitrile; sodium chloride is added to aid partition of the milk and acetonitrile mixture. The acetonitrile extract is then subjected to liquid-liquid purification by the addition of hexane. The purified extract is finally evaporated to dryness and reconstituted in a water/acetonitrile mixture and determination is carried out by LC-MS/MS. Decision limit (CC alpha) values and detection capability (CC beta) values have been established for each compound. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Semicarbazide (SEM) was considered to be a characteristic protein-bound side-chain metabolite of the banned veterinary drug nitrofurazone and used as a marker of nitrofurazone abuse. It was recently discovered that SEM can arise in food from sources other than nitrofurazone. This uncertainty over the source of SEM may be overcome if alternative markers specific to tissue-bound nitrofurazone residues can be determined. The structure of nitrofurazone metabolites in vivo and particular proteins to which they are bound are not known. These proteins with altered structure due to the presence of the drug metabolites can be considered as potential alternative biomarkers of nitrofurazone abuse. The proteins implicated in the in vivo binding of nitrofurazone were separated and identified. A crude mixture of proteins extracted from the liver of a rat treated with the drug was separated using a series of different techniques such as preparative isoelectric focusing and size exclusion HPLC. Multiple fractions were assayed by LC-MS/MS to detect the presence of SEM. The proteins containing SEM residues were identified by peptide mass mapping using trypsin digestion and MALDI-TOF. The first protein identified as containing high concentration of SEM was albumin. It was also shown that low molecular weight species within a protein mixture whose main constituent was glutathione S-transferase contained a high concentration of SEM. The chemical composition of these components is under investigation. Preliminary data suggest the SEM forms part of a nitrofurazone metabolite conjugated to glutathione. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A method is described for the quantitative confirmation of halofuginone (HFG) residues in chicken liver and eggs. This method is based on LC coupled to positive ion electrospray MS-MS of the tissue extracts, prepared by trypsin digestion of the tissues followed by liquid-liquid extraction and final clean-up using Solid Phase Extraction (SPE). The [M+H](+) ion at m/z 416 is monitored along with four transitions at m/z 398, 138, 120 and 100. The method has been validated according to the draft EU criteria for the analysis of veterinary drug residues at 15, 30 and 45 mug kg (-1) in liver and 5, 15 and 50 mug kg (-1) in eggs. The new analytical limits, CCalpha and CCbeta were calculated for liver and were 35.4 and 43.6 mug kg (-1), respectively. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Transcription termination is emerging as an important component of gene regulation necessary to partition the genome and minimize transcriptional interference. We have discovered a role for the Arabidopsis RNA silencing enzyme DICER-LIKE 4 (DCL4) in transcription termination of an endogenous Arabidopsis gene, FCA. DCL4 directly associates with FCA chromatin in the 3' region and promotes cleavage of the nascent transcript in a domain downstream of the canonical polyA site. In a dcl4 mutant, the resulting transcriptional read-through triggers an RNA interference–mediated gene silencing of a transgene containing the same 3' region. We conclude that DCL4 promotes transcription termination of the Arabidopsis FCA gene, reducing the amount of aberrant RNA produced from the locus.
Resumo:
Objective: The buccal absorption of captopril does not exhibit the classical pH/partition hypothesis, suggesting that mechanisms other than passive diffusion are involved in its absorption; animal studies have suggested that a peptide carrier-mediated transport system may be responsible for its absorption. The present study evaluated the effects of pH on octanol partitioning, and on the buccal absorption of enalapril and lisinopril, using in vitro techniques and buccal partitioning in human volunteer subjects.
Resumo:
Chicken (avian) pancreatic polypeptide was the first member of the pancreatic polypeptide (PP)/neuropeptide Y (NPY) superfamily to be discovered and structurally-characterised. In this 36 amino acid residue, C-terminally amidated peptide, residues 22 and 23 were identified as Asp and Asn, respectively. However, sequencing of chicken PP using modem automated gas-phase sequencing technology has revealed that the original primary structure is incorrect in that residue 22 is Asn and that residue 23 is Asp. After digestion of chicken PP with endoproteinase Asp-N, fragments of chicken PP corresponding in molecular mass to residues 16-22 and 23-36, were unequivocally identified. The corrected primary structure of chicken PP is therefore: Gly-Pro-Ser-Gln-Pro-Thr-Tyr-Pro-Gly-Asp-Asp-Ala-Pro-Val-Glu-Asp-Leu-Ile-Arg-Phe-Tyr-Asn-Asp-Leu-Gln-Gln-Tyr-Leu-Asn-Val-Val-Thr-Arg-His-Arg-Tyr-NH2.
Resumo:
In the financially precarious period which followed the partition of Ireland (1922) the Northern Irish playwright George Shiels kept The Abbey Theatre, Dublin, open for business with a series of ‘box-office’ successes. Literary Dublin was not so appreciative of his work as the Abbey audiences dubbing his popular dramaturgy mere ‘kitchen comedy’. However, recent analysts of Irish theatre are beginning to recognise that Shiels used popular theatre methods to illuminate and interrogate instances of social injustice both north and south of the Irish border. In doing so, such commentators have set up a hierarchy between the playwright’s early ‘inferior’ comedies and his later ‘superior’ works of Irish Realism. This article rejects this binary by suggesting that in this early work Shiels’s intent is equally socially critical and that in the plays Paul Twyning, Professor Tim and The Retrievers he is actively engaging with the farcical tradition in order to expose the marginalisation of the landless classes in Ireland in the post-colonial jurisdictions.
Resumo:
Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.