898 resultados para desig automation of robots
Resumo:
Increasingly socially intelligent agents (software or robotic) are used in education, rehabilitation and therapy. This paper discusses the role of interactive, mobile robots as social mediators in the particular domain of autism therapy. This research is part of the project AURORA that studies how mobile robots can be used to teach children with autism basic interaction skills that are important in social interactions among humans. Results from a particular series of trials involving pairs of two children and a mobile robot are described. The results show that the scenario with pairs of children and a robot creates a very interesting social context which gives rise to a variety of different social and non-social interaction patterns, demonstrating the specific problems but also abilities of children with autism in social interactions. Future work will include a closer analysis of interactional structure in human-human and robot-human interaction. We outline a particular framework that we are investigating.
Resumo:
This paper outlines some rehabilitation applications of manipulators and identifies that new approaches demand that the robot make an intimate contact with the user. Design of new generations of manipulators with programmable compliance along with higher level controllers that can set the compliance appropriately for the task, are both feasible propositions. We must thus gain a greater insight into the way in which a person interacts with a machine, particularly given that the interaction may be non-passive. We are primarily interested in the change in wrist and arm dynamics as the person co-contracts his/her muscles. It is observed that this leads to a change in stiffness that can push an actuated interface into a limit cycle. We use both experimental results gathered from a PHANToM haptic interface and a mathematical model to observe this effect. Results are relevant to the fields of rehabilitation and therapy robots, haptic interfaces, and telerobotics
Resumo:
As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.
Resumo:
Foundation construction process has been an important key point in a successful construction engineering. The frequency of using diaphragm wall construction method among many deep excavation construction methods in Taiwan is the highest in the world. The traditional view of managing diaphragm wall unit in the sequencing of construction activities is to establish each phase of the sequencing of construction activities by heuristics. However, it conflicts final phase of engineering construction with unit construction and effects planning construction time. In order to avoid this kind of situation, we use management of science in the study of diaphragm wall unit construction to formulate multi-objective combinational optimization problem. Because the characteristic (belong to NP-Complete problem) of problem mathematic model is multi-objective and combining explosive, it is advised that using the 2-type Self-Learning Neural Network (SLNN) to solve the N=12, 24, 36 of diaphragm wall unit in the sequencing of construction activities program problem. In order to compare the liability of the results, this study will use random researching method in comparison with the SLNN. It is found that the testing result of SLNN is superior to random researching method in whether solution-quality or Solving-efficiency.
Resumo:
A number of Intelligent Mobile Robots have been developed at the University of Reading. They are completely autonomous in that no umbilical cord attaches to them to extra power supplies or computer station: further, they are not radio controlled. In this paper, the robots are discussed, in their various forms, and the individual behaviours and characteristics which appear are considered.
Resumo:
The whole concept of just what is and what is not, intelligence is a vitally important one. As humans interact more with machines, so the similarities and differences between human and machine intelligence need to be looked at in a sensible, scientific way. This paper considers human and machine intelligence and links them closely to physical characteristics, as exhibited by robots. Potential interfaces between humans and machines are also considered, as is the state of the art in direct physical links between humans and machines.
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.
Resumo:
In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.
Resumo:
In this article, four different practical experiments in robotics and human/machine merger are firstly described and then considered with regard to their ethical implications. Results from the experiments are discussed in terms of their meaning and application possibilities. The article is written from the perspective of scientific experimentation, opening up realistic possibilities to be faced in the future rather than giving conclusive comments on the technologies employed. Human implantation and the merger of biology and technology are key elements.
Resumo:
The aim of this article is to identify the key factors that are associated with the adoption of a commercial robot in the home. This article is based on the development of the robot product Cybot by the University of Reading in conjunction with a publisher (Eaglemoss International Ltd.). The robots were distributed through a new part-work magazine series (Ultimate Real Robots) that had long-term customer usage and retention. A part-work is a serial publication that is issued periodically (e.g., every two weeks), usually in magazine format, and builds into a complete collection. This magazine focused on robotics and was accompanied by cover-mounted component parts that could be assembled, with instructions, by the user to build a working robot over the series. In total, the product contributed over half a million operational domestic robots to the world market, selling over 20 million robot part-work magazines across 18 countries, thereby providing a unique breadth of insight. Gaining a better understanding of the overall attitudes that customers of this product had toward robots in the home, their perception of what such devices could deliver and how they would wish to interact with them should provide results applicable to the domestic appliance, assistance/care, entertainment, and educational markets.