998 resultados para delta 13C, skeletal carbonate
Resumo:
By recreating a range of geologically relevant concentrations of dissolved inorganic carbon (DIC) in the laboratory, we demonstrate that the magnitude of the vital effects in both carbon and oxygen isotopes of coccolith calcite of multiple species relates to ambient DIC concentration. Under high DIC levels, all the examined coccoliths exhibit significantly reduced isotopic offsets from inorganic calcite compared to the substantial vital effects expressed at low (preindustrial and present-day) DIC concentrations. The supply of carbon to the cell exerts a primary control on biological fractionation in coccolith calcite via the modulation of coccolithophore growth rate, cell size and carbon utilisation by photosynthesis and calcification, altogether accounting for the observed interspecific differences between coccolith species. These laboratory observations support the recent hypothesis from field observations that the appearance of interspecific vital effect in coccolithophores coincides with the long-term Neogene decline of atmospheric CO2 concentrations and bring further valuable constraints by demonstrating a convergence of all examined species towards inorganic values at high pCO2 regimes. This study provides palaeoceanographers with a biogeochemical framework that can be utilised to further develop the use of calcareous nannofossils in palaeoceanography to derive sea surface temperature and pCO2 levels, especially during periods of relatively elevated pCO2 concentrations, as they prevailed during most of the Meso-Cenozoic.
Resumo:
Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of < 7 µmol/kg under the Peruvian upwelling and < 5 µmol/kg in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 µmol/kg. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 µmol/kg, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation rates ranged from 0.7 and 2.8 g C /cm2 /kyr in laminated OAE 2 sections in Tarfaya Basin, Morocco, matching late Holocene accumulation rates of laminated Peruvian sediments under Recent oxygen levels below 5 µmol/kg. Sediments deposited at > 10 µmol/kg showed an inverse exponential relationship of bottom-water oxygen levels and organic carbon accumulation depicting enhanced bioirrigation and decomposition of organic matter with increased oxygen supply. In the absence of seasonal laminations and under conditions of low burial diagenesis, this relationship may facilitate quantitative estimates of palaeo-oxygenation. Similarities and differences between Cretaceous OAEs and late Quaternary OMZs have to be further explored to improve our understanding of sedimentary systems under hypoxic conditions.