969 resultados para decomposition microenvironment
Resumo:
A number of hydrological, botanical, macro- and micro-climatological processes are involved in the formation of patterned peatlands. La Grande Tsa at 2336 m a.s.l. is probably the highest bog in the central Swiss Alps and is unique in its pattern. In two of five pools there is in the contact zone between the basal peat and the overlying gyttja an unconformity in the depth-age models based on radiocarbon dates. Palynostratigraphies of cores from a ridge and a pool confirm the occurrence of an unconformity in the contact zone. We conclude that deepening of the pools results from decomposition of peat. The fact that the dated unconformities in the two pools and the unconformity in the ridge-core all fall within the Bronze Age suggest they were caused by events external to the bog. We hypothesize that early transhumance resulted in anthropogenic lowering of the timberline, which resulted in a reduction in the leaf-area index and evapotranspiration, and in higher water levels and thus pool formation.
Resumo:
Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.
Resumo:
Background Tissue microarray (TMA) technology revolutionized the investigation of potential biomarkers from paraffin-embedded tissues. However, conventional TMA construction is laborious, time-consuming and imprecise. Next-generation tissue microarrays (ngTMA) combine histological expertise with digital pathology and automated tissue microarraying. The aim of this study was to test the feasibility of ngTMA for the investigation of biomarkers within the tumor microenvironment (tumor center and invasion front) of six tumor types, using CD3, CD8 and CD45RO as an example. Methods Ten cases each of malignant melanoma, lung, breast, gastric, prostate and colorectal cancers were reviewed. The most representative H&E slide was scanned and uploaded onto a digital slide management platform. Slides were viewed and seven TMA annotations of 1 mm in diameter were placed directly onto the digital slide. Different colors were used to identify the exact regions in normal tissue (n = 1), tumor center (n = 2), tumor front (n = 2), and tumor microenvironment at invasion front (n = 2) for subsequent punching. Donor blocks were loaded into an automated tissue microarrayer. Images of the donor block were superimposed with annotated digital slides. Exact annotated regions were punched out of each donor block and transferred into a TMA block. 420 tissue cores created two ngTMA blocks. H&E staining and immunohistochemistry for CD3, CD8 and CD45RO were performed. Results All 60 slides were scanned automatically (total time < 10 hours), uploaded and viewed. Annotation time was 1 hour. The 60 donor blocks were loaded into the tissue microarrayer, simultaneously. Alignment of donor block images and digital slides was possible in less than 2 minutes/case. Automated punching of tissue cores and transfer took 12 seconds/core. Total ngTMA construction time was 1.4 hours. Stains for H&E and CD3, CD8 and CD45RO highlighted the precision with which ngTMA could capture regions of tumor-stroma interaction of each cancer and the T-lymphocytic immune reaction within the tumor microenvironment. Conclusion Based on a manual selection criteria, ngTMA is able to precisely capture histological zones or cell types of interest in a precise and accurate way, aiding the pathological study of the tumor microenvironment. This approach would be advantageous for visualizing proteins, DNA, mRNA and microRNAs in specific cell types using in situ hybridization techniques.
Resumo:
Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.
Resumo:
Recently, we reported a functional interaction between miR-21 and its identified chemokine target CCL20 in colorectal cancer (CRC) cell lines. Here, we investigated whether such functional interactions are permitted at the cellular level which would require an inverse correlation of expression and also co-expression of miR-21 and CCL20 in the same cell. Expression profiling was performed using qPCR, and ELISA, in situ hybridization and immunohistochemistry were applied for the presentation of their cellular localization. We demonstrated that miR-21 as well as CCL20 were both significantly upregulated in CRC tissues; thus, showing no antidromic expression pattern. This provided an initial clue that miR-21 and CCL20 may not be expressed in the same cell. In addition, we located miR-21 expression at the cellular level predominantly in stromal cells such as tumor-associated fibroblasts and to a minor degree in immune cells such as macrophages and lymphocytes. Likewise, CCL20 expression was primarily detected in tumor-infiltrating immune cells. Thus, investigating the cellular localization of miR-21 and its target CCL20 revealed that both molecules are expressed predominantly in the microenvironment of CRC tumors.
Resumo:
The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.