981 resultados para crystalline structures
Resumo:
Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Three new basal-apical, mu(2)-1,1-azide bridged complexes, [CuL1(N-3)](2) (1), [CuL2(N-3)](2) (2) and [CuL3(N-3)]2 (3) with very similar tridentate Schiff base blocking ligands [L-1=N-(3-aminopropyl) salicylaldimine, L-2=7-amino-4-methyl-5-azahept-3-en-2-one and L-3=8-amino-4-methyl-5-azaoct-3-en-2-one) have been synthesised and their molecular structures determined by X-ray crystallography. In complex 1, there is no inter-dimer H-bonding. However, complexes 2 and 3 form two different supramolecular structures in which the dinuclear entities are linked by strong H-bonds giving one-dimensional systems. Variable-temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1 and 2 have antiferromagnetic coupling while 3 has ferromagnetic coupling which is also confirmed by EPR spectra at 4-300 K. Magnetostructural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds in complexes 2 and 3.
Resumo:
The synthesis, characterisation, X-ray single crystal structures and magnetic properties of three new basal-apical mu(2)-1,1-azide-bridged complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2](2) (2) and [(CuLN3)-N-3](2) (3) with very similar tridentate Schiff-base blocking ligands {HL1 = N-[2-(ethylamino) ethyl] salicylaldimine; HL2 = 7-(ethylamino)-4-methyl-5-azahept-3-en-2-one; HL3 = 7-amino-4-methyl-5-azaoct-3-en-2-one} have been reported [complex 1: monoclinic, P2(1)/c, a = 8.390(2), b = 7.512(2), c = 19.822(6) Angstrom, beta = 91.45(5)degrees; complex 2: monoclinic, P2(1)/c, a = 8.070(9), b = 9.787(12), c = 15.743(17) A, beta = 98.467(10)degrees; complex 3: monoclinic, P2(1)/n, a = 5.884(7), b = 16.147(18), c = 11.901(12) Angstrom, beta = 90.050(10)degrees]. The structures consist of neutral dinuclear entities resulting from the pairing of two mononuclear units through end-on azide bridges connecting an equatorial position of one copper centre to an axial position of the other, The copper ions adopt a (4+1) square-based geometry in all the complexes. In complex 2, there is no inter-dimer hydrogen-bonding. However, complexes 1 and 3 form two different supramolecular structures in which the dinuclear entities are linked by H-bonds giving one-dimensional systems. Variable temperature (300-2 K) magnetic-susceptibility measurements and magnetisation measurements at 2 K reveal that all three complexes have antiferromagnetic coupling. Magneto-structural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.
Resumo:
We have developed a new method for the synthesis of Pd nanoparticles with controllable sizes within a silica matrix using solid-supported surfactants in supercritical CO2. XRD, HRTEM and CO chemisorption data show that unformly sized Pd nanoparticles are evenly distributed within the porous silica and are chemically tethered by surfactant molecules [poly(oxyethylene stearyl ether) and fluorinated poly(oxyethylene)]. It is postulated that tiny solid-supported surfactant assemblies act as nano-reactors for the template synthesis of nanoparticles or clusters from the soluble precursors therein.
Resumo:
Elongated crystalline particles formed as by-products during poly(arylene ether ketone) synthesis by electrophilic precipitation-polycondensation of 4,4'-diphenoxybenzophenone with terephthaloyl chloride or isophthaloyl chloride, thought previously to be polymer-whiskers, have now been identified as macrocyclic phases. Single crystal X-ray analysis of the needle-like particles formed in the reaction with terephthaloyl chloride, using the microdiffraction technique with synchrotron radiation, revealed that they consist of a macrocylic compound containing ten phenylene units, i.e. the [2 + 2] cyclic dimer. An analogous structure has also been demonstrated for the corresponding macrocycle derived from the reaction of 4,4-diphenoxybenzophenone with isophthaloyl chloride. Chloroform extraction of the products of the two polycondensations dissolved the macrocyclic material (but not the linear polymer), and analysis of the extracts by MALDI-TOF mass spectrometry demonstrated the presence in both cases of homologous families of macrocyclic products. Higher yields of macrocycles were obtained under pseudo-high dilution conditions, enabling the [2 + 2] cyclodimers from reactions of 4,4'-diphenoxybenzophenone with both terephthaloyl and isophthaloyl chloride to be isolated as pure compounds and fully characterised. (C) 2003 Published by Elsevier Ltd.
Resumo:
Rolling Contact Fatigue (RCF) is one of the main issues that concern, at least initially, the head of the railway; progressively they can be of very high importance as they can propagate inside the material with the risk of damaging the railway. In this work, two different non-destructive techniques, infrared thermography (IRT) and fibre optics microscopy (FOM), were used in the inspection of railways for the tracing of defects and deterioration signs. In the first instance, two different approaches (dynamic and pulsed thermography) were used, whilst in the case of FOM, microscopic characterisation of the railway heads and classification of the deterioration -- damage on the railways according to the UIC (International Union of Railways) code, took place. Results from both techniques are presented and discussed.
Resumo:
Crumpets are made by heating fermented batter on a hot plate at around 230°C. The characteristic structure dominated by vertical pores develops rapidly: structure has developed throughout around 75% of the product height within 30s, which is far faster than might be expected from transient heat conduction through the batter. Cooking is complete within around 3 min. Image analysis based on results from X-ray tomography shows that the voidage fraction is approximately constant and that there is continual coalescence between the larger pores throughout the product although there is also a steady level of small bubbles trapped within the solidified batter. We report here experimental studies which shed light on some of the mechanisms responsible for this structure, together with some models of key phenomena.Three aspects are discussed here: the role of gas (carbon dioxide and nitrogen) nuclei in initiating structure development; convective heat transfer inside the developing pores; and the kinetics of setting the batter into an elastic solid structure. It is shown conclusively that the small bubbles of carbon dioxide resulting from the fermentation stage play a crucial role as nuclei for pore development: without these nuclei, the result is not a porous structure, but rather a solid, elastic, inedible, gelatinized product. These nuclei are also responsible for the tiny bubbles which are set in the final product. The nuclei form the source of the dominant pore structure which is largely driven by the, initially explosive, release of water vapour from the batter together with the desorption of dissolved carbon dioxide. It is argued that the rapid evaporation, transport and condensation of steam within the growing pores provides an important mechanism, as in a heat pipe, for rapid heat transfer, and models for this process are developed and tested. The setting of the continuous batter phase is essential for final product quality: studies using differential scanning calorimetry and on the kinetics of change in the visco-elastic properties of the batter suggest that this process is driven by the kinetics of gelatinization. Unlike many thermally driven food processes the rates of heating are such that gelatinization kinetics cannot be neglected. The implications of these results for modelling and for the development of novel structures are discussed.
Resumo:
Crystal structure determination of adducts of sparteine and PhLi, (-)-sparteine and PhOLi and of sparteine and PhLi/PhOLi reveal a four-membered ring with two lithium centers, each capped by a (-)-sparteine ligand, as central motif of all structure. Quantum-chemical calculations show that the mixed aggregate [PhLi center dot PhOLi center dot 2(-)-sparteine] is energetically more favorable than the model system {1/2[PhLi center dot(-)-sparteine](2) + 1/2[PhOLi center dot(-)-sparteine](2)}.
Resumo:
Solvent influences on the crystallization of polymorph and hydrate forms of the nootropic drug piracetam (2-oxo-pyrrolidineacetamide) were investigated from water, methanol, 2-propanol, isobutanol, and nitromethane. Crystal growth profiles of piracetam polymorphs were constructed using time-resolved diffraction snapshots collected for each solvent system. Measurements were performed by in situ energy dispersive X-ray diffraction recorded in Station 16.4 at the synchrotron radiation source (SRS) at Daresbury Laboratory, CCLRC UK. Crystallizations from methanol, 2-propanol, isobutanol, and nitromethane progressed in a similar fashion with the initial formation of form I which then converted relatively quickly to form II with form III being generated upon further cooling. However, considerable differences were observed for the polymorphs lifetime and both the rate and temperature of conversion using the different solvents. The thermodynamically unstable form I was kinetically favored in isobutanol and nitromethane where traces of this polymorph were observed below 10 degrees C. In contrast, the transformation of form II and subsequent growth of form III were inhibited in 2-propanol and nitromethane solutions. Aqueous solutions produced hydrate forms of piracetam which are different from the reported monohydrate; this crystallization evolved through successive generation of transient structures which transformed upon exchange of intramolecular water between the liquid and crystalline phases. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:1069-1078, 2007.
Resumo:
In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.