931 resultados para cryptographic protocols


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the venerable question of access credentials management, which concerns the techniques that we, humans with limited memory, must employ to safeguard our various access keys and tokens in a connected world. Although many existing solutions can be employed to protect a long secret using a short password, those solutions typically require certain assumptions on the distribution of the secret and/or the password, and are helpful against only a subset of the possible attackers. After briefly reviewing a variety of approaches, we propose a user-centric comprehensive model to capture the possible threats posed by online and offline attackers, from the outside and the inside, against the security of both the plaintext and the password. We then propose a few very simple protocols, adapted from the Ford-Kaliski server-assisted password generator and the Boldyreva unique blind signature in particular, that provide the best protection against all kinds of threats, for all distributions of secrets. We also quantify the concrete security of our approach in terms of online and offline password guesses made by outsiders and insiders, in the random-oracle model. The main contribution of this paper lies not in the technical novelty of the proposed solution, but in the identification of the problem and its model. Our results have an immediate and practical application for the real world: they show how to implement single-sign-on stateless roaming authentication for the internet, in a ad-hoc user-driven fashion that requires no change to protocols or infrastructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cryptographic community has, of late, shown much inventiveness in the creation of powerful new IBE-like primitives that go beyond the basic IBE notion and extend it in many new directions. Virtually all of these “super-IBE” schemes rely on bilinear pairings for their implementation, which they tend to use in a surprisingly small number of different ways: three of them as of this writing. What is interesting is that, among the three main frameworks that we know of so far, one has acted as a veritable magnet for the construction of many of these “generalized IBE” primitives, whereas the other two have not been nearly as fruitful in that respect. This refers to the Commutative Blinding framework defined by the Boneh-Boyen [Bscr ][Bscr ]1 IBE scheme from 2004. The aim of this chapter is to try to shed some light on this approach's popularity, first by comparing its key properties with those of the competing frameworks, and then by providing a number of examples that illustrate how those properties have been used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WG-7 is a stream cipher based on WG stream cipher and has been designed by Luo et al. (2010). This cipher is designed for low cost and lightweight applications (RFID tags and mobile phones, for instance). This paper addresses cryptographic weaknesses of WG-7 stream cipher. We show that the key stream generated by WG-7 can be distinguished from a random sequence after knowing 213.5 keystream bits and with a negligible error probability. Also, we investigate the security of WG-7 against algebraic attacks. An algebraic key recovery attack on this cipher is proposed. The attack allows to recover both the internal state and the secret key with the time complexity about 2/27.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sum of k mins protocol was proposed by Hopper and Blum as a protocol for secure human identification. The goal of the protocol is to let an unaided human securely authenticate to a remote server. The main ingredient of the protocol is the sum of k mins problem. The difficulty of solving this problem determines the security of the protocol. In this paper, we show that the sum of k mins problem is NP-Complete and W[1]-Hard. This latter notion relates to fixed parameter intractability. We also discuss the use of the sum of k mins protocol in resource-constrained devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present two unconditional secure protocols for private set disjointness tests. In order to provide intuition of our protocols, we give a naive example that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the intersection cardinality. More specifically, it discloses its lower bound. By using the Lagrange interpolation, we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. In this protocol, a verification test is applied to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are the first ones that have been designed without a generic secure function evaluation. More important, they are the most efficient protocols for private disjointness tests in the malicious adversary case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a nonstandard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (geometry of numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent floods in south-east Queensland have focused policy, academic and community attention on the challenges associated with severe weather events (SWE), specifically pre-disaster preparation, disaster-response and post-disaster community resilience. Financially, the cost of SWE was $9 billion in the 2011 Australian Federal Budget (Swan 2011); psychologically and emotionally, the impact on individual mental health and community wellbeing is also significant but more difficult to quantify. However, recent estimates suggest that as many as one in five will subsequently experience major emotional distress (Bonanno et al. 2010). With climate change predicted to increase the frequency and intensity of a wide range of SWE in Australia (Garnaut 2011; The Climate Institute 2011), there is an urgent and critical need to ensure that the unique psychological and social needs of more vulnerable community members - such as older residents - are better understood and integrated into disaster preparedness and response policy, planning and protocols. Navigating the complex dynamics of SWE can be particularly challenging for older adults and their disaster experience is frequently magnified by a wide array of cumulative and interactive stressors, which intertwine to make them uniquely vulnerable to significant short and long-term adverse effects. This current article provides a brief introduction to the current literature in this area and highlights a gap in the research relating to communication tools during and after severe weather events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RC4(n, m) is a stream cipher based on RC4 and is designed by G. Gong et al. It can be seen as a generalization of the famous RC4 stream cipher designed by Ron Rivest. The authors of RC4(n, m) claim that the cipher resists all the attacks that are successful against the original RC4. The paper reveals cryptographic weaknesses of the RC4(n, m) stream cipher. We develop two attacks. The first one is based on non-randomness of internal state and allows to distinguish it from a truly random cipher by an algorithm that has access to 24·n bits of the keystream. The second attack exploits low diffusion of bits in the KSA and PRGA algorithms and recovers all bytes of the secret key. This attack works only if the initial value of the cipher can be manipulated. Apart from the secret key, the cipher uses two other inputs, namely, initial value and initial vector. Although these inputs are fixed in the cipher specification, some applications may allow the inputs to be under the attacker control. Assuming that the attacker can control the initial value, we show a distinguisher for the cipher and a secret key recovery attack that for the L-bit secret key, is able to recover it with about (L/n) · 2n steps. The attack has been implemented on a standard PC and can reconstruct the secret key of RC(8, 32) in less than a second.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NTRUEncrypt is a fast and practical lattice-based public-key encryption scheme, which has been standardized by IEEE, but until recently, its security analysis relied only on heuristic arguments. Recently, Stehlé and Steinfeld showed that a slight variant (that we call pNE) could be proven to be secure under chosen-plaintext attack (IND-CPA), assuming the hardness of worst-case problems in ideal lattices. We present a variant of pNE called NTRUCCA, that is IND-CCA2 secure in the standard model assuming the hardness of worst-case problems in ideal lattices, and only incurs a constant factor overhead in ciphertext and key length over the pNE scheme. To our knowledge, our result gives the first IND-CCA2 secure variant of NTRUEncrypt in the standard model, based on standard cryptographic assumptions. As an intermediate step, we present a construction for an All-But-One (ABO) lossy trapdoor function from pNE, which may be of independent interest. Our scheme uses the lossy trapdoor function framework of Peikert and Waters, which we generalize to the case of (k − 1)-of-k-correlated input distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Eurocrypt’04, Freedman, Nissim and Pinkas introduced a fuzzy private matching problem. The problem is defined as follows. Given two parties, each of them having a set of vectors where each vector has T integer components, the fuzzy private matching is to securely test if each vector of one set matches any vector of another set for at least t components where t < T. In the conclusion of their paper, they asked whether it was possible to design a fuzzy private matching protocol without incurring a communication complexity with the factor (T t ) . We answer their question in the affirmative by presenting a protocol based on homomorphic encryption, combined with the novel notion of a share-hiding error-correcting secret sharing scheme, which we show how to implement with efficient decoding using interleaved Reed-Solomon codes. This scheme may be of independent interest. Our protocol is provably secure against passive adversaries, and has better efficiency than previous protocols for certain parameter values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modular, graphic-oriented Internet browser has been developed to enable non-technical client access to a literal spinning world of information and remotely sensed. The Earth Portal (www.earthportal.net) uses the ManyOne browser (www.manyone.net) to provide engaging point and click views of the Earth fully tessellated with remotely sensed imagery and geospatial data. The ManyOne browser technology use Mozilla with embedded plugins to apply multiple 3-D graphics engines, e.g. ArcGlobe or GeoFusion, that directly link with the open-systems architecture of the geo-spatial infrastructure. This innovation allows for rendering of satellite imagery directly over the Earth's surface and requires no technical training by the web user. Effective use of this global distribution system for the remote sensing community requires a minimal compliance with protocols and standards that have been promoted by NSDI and other open-systems standards organizations.