977 resultados para cranio-facial anatomy
Resumo:
Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.
Resumo:
The aim of this study was to evaluate the difference between the effect of a 5-day and a 1-day postoperative course of antibiotics on the incidence of infection after midfacial fractures. A total of 98 patients with displaced Le Fort or zygomatic fractures that required operation were randomly assigned into 2 groups, both of which were given amoxicillin/clavulanic acid 1.2g intravenously every 8h from the time of admission until 24h postoperatively. The 5-day group was then given amoxicillin/clavulanic acid 625mg orally 8-hourly for another 4 days. The 1-day group was given placebo orally at the same time points. Patients were followed up 1, 2, 4, 6, and 12 weeks, and 6 months, postoperatively. The development of an infection of the wound was the primary end point. Ninety-four of the 98 patients completed the study. Two of the 45 patients in the 5-day group (4%) and 2/49 in the 1-day group (4%) developed postoperative wound infections. One in each group had a purulent infection, while the others had only wound breakdown. Two patients of the 5-day group and one in the 1-day group developed rashes on the trunk. There were no significant differences in the incidence of infection or side effects between the groups. In midfacial fractures a 1-day course of antibiotics postoperatively is as effective in preventing infective complications as a 5-day regimen.
Resumo:
Orbital blunt trauma is common, and the diagnosis of a fracture should be made by computed tomographic (CT) scan. However, this will expose patients to ionising radiation. Our objective was to identify clinical predictors of orbital fracture, in particular the presence of a black eye, to minimise unnecessary exposure to radiation. A 10-year retrospective study was made of the medical records of all patients with minor head trauma who presented with one or two black eyes to our emergency department between May 2000 and April 2010. Each of the patients had a CT scan, was over 16 years old, and had a Glasgow Coma Score (GCS) of 13-15. The primary outcome was whether the black eye was a valuable predictor of a fracture. Accompanying clinical signs were considered as a secondary outcome. A total of 1676 patients (mean (SD) age 51 (22) years) and minor head trauma with either one or two black eyes were included. In 1144 the CT scan showed a fracture of the maxillofacial skeleton, which gave an incidence of 68.3% in whom a black eye was the obvious symptom. Specificity for facial fractures was particularly high for other clinical signs, such as diminished skin sensation (specificity 96.4%), diplopia or occulomotility disorders (89.3%), fracture steps (99.8%), epistaxis (95.5%), subconjunctival haemorrhage (90.4%), and emphysema (99.6%). Sensitivity for the same signs ranged from 10.8% to 22.2%. The most striking fact was that 68.3% of all patients with a black eye had an underlying fracture. We therefore conclude that a CT scan should be recommended for every patient with minor head injury who presents with a black eye.
Resumo:
Cerebrovascular diseases are significant causes of death and disability in humans. Improvements in diagnostic and therapeutic approaches strongly rely on adequate gyrencephalic, large animal models being demanded for translational research. Ovine stroke models may represent a promising approach but are currently limited by insufficient knowledge regarding the venous system of the cerebral angioarchitecture. The present study was intended to provide a comprehensive anatomical analysis of the intracranial venous system in sheep as a reliable basis for the interpretation of experimental results in such ovine models. We used corrosion casts as well as contrast-enhanced magnetic resonance venography to scrutinize blood drainage from the brain. This combined approach yielded detailed and, to some extent, novel findings. In particular, we provide evidence for chordae Willisii and lateral venous lacunae, and report on connections between the dorsal and ventral sinuses in this species. For the first time, we also describe venous confluences in the deep cerebral venous system and an 'anterior condylar confluent' as seen in humans. This report provides a detailed reference for the interpretation of venous diagnostic imaging findings in sheep, including an assessment of structure detectability by in vivo (imaging) versus ex vivo (corrosion cast) visualization methods. Moreover, it features a comprehensive interspecies-comparison of the venous cerebral angioarchitecture in man, rodents, canines and sheep as a relevant large animal model species, and describes possible implications for translational cerebrovascular research.
Resumo:
BACKGROUND Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D) evaluation, but three-dimensional (3D) imaging methods to assess treatment outcome are steadily rising. OBJECTIVE To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. DATA SOURCES Literature was searched using PubMed (1948-2012), EMBASE (1980-2012), Scopus (2004-2012), Web of Science (1945-2012), and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. STUDY SELECTION We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. DATA EXTRACTION Independent extraction of data and quality assessments were performed by two observers. RESULTS Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. CONCLUSION Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods. Further research is warranted to elucidate it.
Resumo:
OBJECTIVES The aim of the study was to identify differences in the aesthetic evaluation of profile and frontal photographs of (1) patients treated for complete left-sided cleft lip and palate and (2) control patients by laypeople and professionals. MATERIALS, SUBJECTS, AND METHODS Left-side profile and frontal photographs of 20 adult patients treated for complete left-sided cleft lip and palate (10 men, 10 women, mean age: 20.5 years) and of 10 control patients with a class I occlusion (five men, five women, mean age: 22.1 years) were included in the study. The post-treatment photographs were evaluated by 15 adult laypeople, 14 orthodontists, and 10 maxillofacial surgeons. Each photograph was judged on a modified visual analogue scale (VA S, 0-10; 0 'very unattractive' to 10 'very attractive'). A four-level mixed model was fitted in which the VA S score was the dependent variable; cases, profession, view, and rater were independent variables. RESULTS Compared with laypersons, orthodontists gave higher VA S scores (+0.69, 95% confidence interval (CI) [0.53, 0.84]; P < 0.001), followed by surgeons (+0.21, 95% CI [0.03, 0.38], P = 0.02). Controls were given significantly higher scores than patients with clefts for profile and frontal photographs (+1.97, 95% CI [1.60; 2.35], P < 0.001). No significant difference was found between the scores for the frontal and lateral views (P = 0.46). CONCLUSIONS All the different rater panels were less satisfied with the facial aesthetics of patients with clefts compared with that of control patients. Further research should evaluate whether these findings correlate with patients' self-perception and to what extent it affects the patients' psychosocial well-being.
Resumo:
Teamwork and the interprofessional collaboration of all health professions are a guarantee of patient safety and highly qualified treatment in patient care. In the daily clinical routine, physicians and nurses must work together, but the education of the different health professions occurs separately in various places, mostly without interrelated contact. Such training abets mutual misunderstanding and cements professional protectionism, which is why interprofessional education can play an important role in dismantling such barriers to future cooperation. In this article, a pilot project in interprofessional education involving both medical and nursing students is presented, and the concept and the course of training are described in detail. The report illustrates how nursing topics and anatomy lectures can be combined for interprofessional learning in an early phase of training. Evaluation of the course showed that the students were highly satisfied with the collaborative training and believed interprofessional education (IPE) to be an important experience for their future profession and understanding of other health professionals. The results show that the IPE teaching concept, which combines anatomy and nursing topics, provides an optimal setting for learning together and helps nurses and doctors in training to gain knowledge about other health professionals’ roles, thus evolving mutual understanding.
Resumo:
Local skin flaps can be divided into two types: random flaps and axial flaps. An axial flap is defined as a flap containing a named artery in its pedicle. For the paramedian forehead flap (PMFF) a lot of surgeons insist on the point that the pedicle must contain the supratrochlear artery. To demonstrate that median forehead flaps (MFF) need not contain a named artery, we selected first 8 patients with a PMFF and further 12 patients who had undergone reconstructive surgery using a MFF. After division, we analysed the pedicle of the flap histologically and measured the diameter of the arteries or arterioles and compared them to anatomical descriptions of the frontal arteries. In none of the 12 cases could we find a functional artery of approximately 1 mm in diameter that could correspond to the supratrochlear artery. The MFF is an axial flap but not in accordance with the current definition of this term. In contrast to published literature, we show that only in a part of cases a named artery was present in the pedicle. Despite this fact, the MFF is a secure flap for full thickness defect repair on the nose.
Resumo:
The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.
Resumo:
With the introduction of transcatheter structural heart therapies, cardiologists are increasingly aware of the importance of understanding anatomical details of left-sided heart structures. Understanding fluoroscopic cardiac anatomy can facilitate optimal positioning and deployment of prostheses during transcatheter valve repair/replacement, left atrial appendage occlusion, septal defect closure, and paravalvular leak closure. It is possible to use multislice computed tomography to determine optimal fluoroscopic viewing angles for such transcatheter therapies. The purpose of this paper is to describe how optimal fluoroscopic viewing angles of left-sided heart structures can be obtained using computed tomography. Two- and 3-chamber views are described and may become standard in the context of transcatheter structural heart interventions.